tim cac nghiem nguyen cau phuong trinh x2-2x-11=y2
tim tat ca cac nghiem nguyen cua phuong trinh :
\(x^2y^2-2x\left(y+2\right)+4=0\)
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2-2xy+4=4x\)
\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)
Mà \(\left(xy-1\right)^2+3>0\)
Nên 4x>0
x>0
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Mà \(x^2y^2+4>0\forall x,y\)
Nên \(2x\left(y+2\right)>0\)
Mặt khác x>0
nên y+2>0
=> y>-2 (1)
Áp dụng bđt Cosi ta có:
\(x^2y^2+4\ge4xy\)
Mà \(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Nên \(2x\left(y+2\right)\ge4xy\)
\(\Rightarrow y+2\ge2y\)
\(\Leftrightarrow y\le2\) (2)
Do y \(\in Z\) và ta đã có (1), (2)
Nên \(y\in\left\{-1;0;1;2\right\}\)
Th1: y = -1
\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)
Th2: y = 0
\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Rightarrow x=2\) (nhận)
Th3: y = 1
\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)
\(\Leftrightarrow x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Th4: y = 2
\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)
4 Th sai cả rồi
do mình thế ngu
ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé
Th1 và Th3 thì mình làm đúng rồi
Th2 : y=0
\(\Rightarrow-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)
Th4: y=2
\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow4x^2-8x+4=0\)
\(\Rightarrow x=1\) (nhận)
Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)
tim tat ca cac nghiem nguyen (x, y) cua phuong trinh x*3+y*3=(x+y)²
tim nghiem nguyen cua phuong trinh 2x – 5y +xy = 6
tim tat ca cac nghiem nguyen (x, y) cua phuong trinh x*3+y*3=(x+y)²
Cac phuong pháp giai phuong trinh nghiem nguyen
cho phuong trinh (2x+5)(x-2)=11 (1)
(x+1)(2x-5)=-3 (2)
trong cac so 1;-1;2;-2;5/2;-5/2 thi so nao la nghiem cua phuong trinh (1), so nao la nghiem cua phuong trinh (2)
Ta có:
(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0
⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)
Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)
Tương tự, ta có:
(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0
⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy trong các số trên thì 2 là nghiệm của phương trình.
Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.
Chúc bạn học tốt@@
tim so nghiem nguyen cua bat phuong trinh \(\sqrt{5-2x}\le4\)
Mua sách luyện olympic về hỏi cô jao nha,....
dk: x<=5/2
BPT <=> 5-2x <= 16
2x>=-11
x>=-11/2
=> x từ -11/2 đến 5/2 là : -5;-4;-3;-2;-1;0;1;2
Sach luyện thi Olympic mua o dau ban sao minh kiếm ko co
tim nghiem nguyen cua phuong trinh
\(2x^2+4x=19-3y^2\)
\( 2x^2+4x=19-3y^2\)
<=>\(2(x^2+2x)=19-3y^2\)
\(<=> x^2+2x=19-3y^2/2\)
Vì x^2+2x thuộc Z
\(=>19-3y^2/2\) thuộc Z
Ta có:
\(19-3y^2/2=(21-3y^2-2)/2=3(7-y^2)/2 -1\)
Vì (3,2)=1
\(=>7-y^2 \) chia hết cho 2
Đặt \(7-y^2=2t\)(t thuộc Z)
\(=>y^2=7-2t\) (1)
Lại có:
\(x^2+2x=19-3y^2/2=3(7-y^2)/2 -1\)
\(<=>(x+1)^2=3(7-y^2)/2 >=0\)
\(=>y^2≤ 7\)
\(=>7-2t≤7\)
\(=>t>=0\)(2)
Từ (1),ta có:
\(7-2t>=0\)
\(<=>t≤7/2\)(3)
Từ (2) và (3)
\(=>t=0,1,2,3\)
Thay vào (1) sẽ tìm được y và từ đó tìm đc x thôi
Tim nghiem nguyen cua phuong trinh: 2xy + x + y=83
2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)
kẻ bảng ra