cmr \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)
(a,b >0)
Cho a,b > 0 . CMR : \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\left(1\right)\)
+) Ta có \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\)
\(\Rightarrow\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\left(2\right)\)
+) Tương tự ta lại có :
\(\sqrt{b\left(3b+a\right)}\le\frac{7b+a}{4}\left(3\right)\)
+) Từ (2) và (3) ta có :
\(VT\left(1\right)\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{1}{2}\left(đpcm\right)\)
Ta có: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)
\(=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{1}{2}\left(4a+3a+b\right)+\frac{1}{2}\left(4b+3b+a\right)}\) (Cauchy)
\(=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi: a = b
CMR :
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\) với a,b >0
\(\frac{4\left(a+b\right)}{2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}}\ge\frac{4\left(a+b\right)}{4a+3a+b+4b+3b+a}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Với mọi a, b>0 chứng minh \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)
\(\frac{\left(a+b\right).2}{\sqrt{a.4.\left(3a+b\right)}+\sqrt{b.4.\left(3b+a\right)}}\)\(\ge\)\(\frac{2.\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}\)\(=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi a=b
CMR : \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\left(a,b>0\right)\)
Giải hệ PT \(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\x+z-y=b\end{cases}}\)
Áp dụng Cô si cho 2 số dương ta đc:
\(2\sqrt{4a\left(3a+b\right)}\le4a+\left(3a+b\right)=7a+b\)
Tương tự: \(2\sqrt{4b\left(3b+a\right)}\le4b+\left(3b+a\right)=7b+a\)
\(\Rightarrow2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}\le8\left(a+b\right)\)
\(\Leftrightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4a=3a+b\\4b=3b+a\\a,b>0\end{cases}}\Leftrightarrow a=b>0\)
Giải HPT:
\(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\z+x-y=b\end{cases}\Leftrightarrow\hept{\begin{cases}2y=c+a\\2z=a+b\\2x=b+c\end{cases}\Leftrightarrow}}\hept{\begin{cases}y=\frac{c+a}{2}\\x=\frac{a+b}{2}\\x=\frac{b+c}{2}\end{cases}}\)
1 ) Áp dụng BĐT Cauchy :
\(2\sqrt{a\left(3a+b\right)}=\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}\)
Tương tự \(2\sqrt{b\left(3b+a\right)}\le\frac{4b+3b+a}{2}\)
\(\Rightarrow2\left(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\right)\le\frac{8a+8b}{2}=4\left(a+b\right)\)
\(\Rightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b>0\)
2 ) Công 3 Pt của hệ ta có :
\(x+y+z=c+a+b\)
\(\hept{\begin{cases}\left(x+y+z\right)-\left(x+y-z\right)=a+b\\\left(x+y+z\right)-\left(y+z-x\right)=c+b\\\left(x+y+z\right)-\left(x+z-y\right)=c+a\end{cases}\Leftrightarrow\hept{\begin{cases}z=\frac{a+b}{2}\\x=\frac{b+c}{2}\\y=\frac{c+a}{2}\end{cases}}}\)
Chứng minh: \(\frac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3c\right)}+\sqrt{c\left(c+3a\right)}}\ge\frac{1}{2}\) với a,b,c dương
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)
\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)
\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)
Dấu "=" khi \(a=b=c\)
\(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Chắc là a;b;c dương
Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\) và vế trái là P
\(P=\frac{x}{\sqrt{z\left(3x+y\right)}}+\frac{y}{\sqrt{x\left(3y+z\right)}}+\frac{z}{\sqrt{y\left(3z+x\right)}}=\frac{x^2}{x\sqrt{3xz+yz}}+\frac{y^2}{y\sqrt{3xy+xz}}+\frac{z^2}{z\sqrt{3yz+xy}}\)
\(P\ge\frac{\left(x+y+z\right)^2}{x\sqrt{3xz+yz}+y\sqrt{3xy+xz}+z\sqrt{3yz+xy}}=\frac{\left(x+y+z\right)^2}{Q}\)
\(Q=\sqrt{x\left(3x^2z+xyz\right)}+\sqrt{y\left(3xy^2+xyz\right)}+\sqrt{z\left(3yz^2+xyz\right)}\)
\(\Rightarrow Q^2\le3\left(x+y+z\right)\left(xy^2+yz^2+zx^2+xyz\right)\)
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Rightarrow x^2+yz\le xy+xz\)
\(\Rightarrow zx^2+yz^2\le xyz+xz^2\Rightarrow xy^2+yz^2+zx^2+xyz\le xy^2+2xyz+xz^2\)
\(\Rightarrow xy^2+yz^2+zx^2+xyz\le x\left(y+z\right)^2=\frac{1}{2}.2x\left(y+z\right)\left(y+z\right)\le\frac{4}{27}\left(x+y+z\right)^3\)
\(\Rightarrow Q^2\le3\left(x+y+z\right).\frac{4}{27}\left(x+y+z\right)^3=\frac{4}{9}\left(x+y+z\right)^4\)
\(\Rightarrow Q\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
cm voi moi so duong a b c thi
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\left(1+\sqrt{2}+\sqrt{3}\right)\left(\frac{1}{a+\sqrt{2b}+\sqrt{3a}}+\frac{1}{b+\sqrt{2c}+\sqrt{3a}}+\frac{1}{c+\sqrt{2a}+\sqrt{3b}}\right)\)