Cho tam giác ABC cân tại A (góc A nhọn). Các đường trung tuyến AH và CM của ABC cắt nhau tại G. a) Tính độ dài đoạn thẳng MH biết AC = 10 cm
Cho tam giác ABC cân tại A ( Góc A nhọn ) . Vẽ đường phân giác của góc BAC cắt BC tại H
a. cm HB = HC và AH vuông góc BC
b. Với AB = 30cm , BC = 36cm. Tính độ dài AH
c. Vẽ đường trung tuyến BM của tam giác ABC cắt AH tại G . Tính độ dài AG và BM
d. Qua H vẽ đường thẳng song song với AC cắt AB tại D . Chứng minh ba điểm C , G , D thẳng hàng
Hỏa Long Natsu bác eii, cái bài này là ae mk tự vẽ hình hay sao ý.
a) Xét \(\Delta AHB\text{ và }\Delta AHC\)
\(AB=AC\)
\(\widehat{A_1}=\widehat{A_2}\)
AH là cạnh chung
Nên: \(\Delta AHB=\Delta AHC\left(c-g-c\right)\)
\(\Rightarrow BH=CH\left(2\text{ cạnh tương ứng}\right)\)
\(\Rightarrow\Delta ABC\perp AH\left(\text{là phân giác cũng vừa là đường cao}\right)\)
\(\Rightarrow AH\perp BC\)
b) \(BH=\frac{36}{2}=18\left(cm\right)\)
\(AB^2=AH^2+BH^2\left(\text{áp dụng định lý Py-Ta-Go}\right)\)
\(AH^2=AB^2-BH^2\)
\(AH^2=30^2-18^2\)
\(AH^2=576\)
\(\Rightarrow AH=\sqrt{576}=24\left(cm\right)\)
c) \(AG=\frac{2}{3}.AH\)
\(\Rightarrow AH.\frac{2}{3}=24.\frac{2}{3}=16\left(cm\right)\)
\(AM=\frac{AB}{2}=\frac{30}{2}=15\left(cm\right)\)
\(\Rightarrow BA^2=AM^2+BM^2\)
\(\Rightarrow MB^2=BA^2-BM^2\)
\(MB^2=30^2-15^2\)
\(MB^2=\sqrt{675}=26\)
d) Bạn tự giải nha
Cho tam giác ABC cân tại A (góc A nhọn). Vẽ đường phân giác của góc BAC cắt BC tại H.
A) Chứng minh HB=HC và AH vuông góc với BC
B) Với AB=30 cm và BC =36 cm . Tính độ dài AH
C) vẽ đường trung tuyến BM của tam giác ABC cắt AH tại G. Tính độ dài AG và BM
D) Qua H vẽ đường thẳng song song với AC cắt AB tại D. Chứng minh Ba điểm C,D,G thẳng hàng.
Bài 4: Cho tam giác ABC cân tại A;đường cao AH và đường trung tuyến BK cắt nhau tại G. Tia CG cắt cạnh AB tại điểm I
c) Biết AH=18 cm; BC=16cm.Tính độ dài đoạn thẳng GI
Vì G là trọng tâm ΔABC
⇒AG=2323 AH=2323 18=12(cm)
Mà AG=2GH
⇒GH=AG2AG2 =122122 =6(cm)
BH=HC(do AH là trung tuyến BC)
⇒BH=HC=BC2BC2 =162162 =8(cm)
Xét ΔGHC có:
GH²+HC²=GC²(Định lí Pi-ta-go)
⇒6²+8²=GC²
⇒36+64=GC²
⇒GC²=100=10²
⇒GC=10(cm)
Mà GC=2GI
⇒GI=GC2GC2 =102102=5(cm)
Vậy độ dài cạnh GI là 5cm
d)Ta có:
Theo b) GI=GK
⇒ΔIGK là tam giác cân tại G
{GC=2GIGB=2GK{GC=2GIGB=2GK
Mà GI=GK
⇒GC=GB
⇒ΔGBC là tam giác cân tại G
Ta có:
∠KIG=∠IKG=180∗−∠IGK2180∗−∠IGK2
∠GBC=∠GCB=180∗−∠BGC2180∗−∠BGC2
Mà ∠IGK=∠BGC(đối đỉnh)
⇒∠KIG=∠GCB
Mà 2 góc ở vị trí so le trong
⇒IK=BC
cho tam giác ABC cân tại A (A≠90). Vẽ trung tuyến AM (MϵBC) và MH vuông góc vs AB, MK vuông góc vs AC, các đường thẳng MK và AB cắt nhau tại E, các đường thẳng MH cắt AB tại K
a) CM :ΔAHM=ΔAMK
b) CM: ΔAEF cân
c) tìm trực tậm của ΔAME
d) vẽ trung tuyến BN của ΔABC, cho AC=5cm, BC=8cm. Tính BN
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
b: Xét ΔHME vuông tại H và ΔKMF vuông tại K có
MH=MK
\(\widehat{HME}=\widehat{KMF}\)
Do đó; ΔHME=ΔKMF
Suy ra: HE=KF
mà AH=AK
nên AE=AF
hay ΔAEF cân tại A
Cho tam giác ABC cân tại A (góc A nhọn). Vẽ đường phân giác của góc BAC cắt BC tại H:
a) Chứng minh HB=HC VÀ AH vuông góc BC.
b) Với AB=30 cm, BC= 36 cm.Tính độ dài AH.
c) Vể đường trung tuyến BM của tam giác ABC cắt AH tại G.Tính độ dài AG và BM.
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
cho tam giác ABC CÂN TẠI A CÓ GÓC A NHỌN. VẼ TIA PHÂN GIÁC GÓC BAC VẮT BC TẠI H. VẼ TRUNG TUYẾN BD CỦA TAM GIÁC ABC CẮT AH TẠI G. QUA H VỮ ĐƯỜNG THẲNG SONG SONG VỚI AC CẮT AB TẠI E. CM: 3 ĐIỂM C,G,E THẲNG HÀNG
Cho tam giác ABC cân tại A, có góc A nhọn. Vẽ AH vuông góc với BC tại H.
a) CM: tam giác ABH = tam giác ACH.
b) Vẽ đường trung tuyến BK của tam giác ABC cắt AH tại O. Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt AB tại I. CM: tam giác HAI cân và ba điểm C, O, I thẳng hàng.
c) CM: AH > CH.
mk ko bt lm câu c nha ~~ xl ~~~~
https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+K%E1%BA%BB+AH+vu%C3%B4ng+g%C3%B3c+BC+t%E1%BA%A1i+H++a)+CM+tam+gi%C3%A1c+ABH=tam+gi%C3%A1c+ACH++b)+V%E1%BA%BD+trung+tuy%E1%BA%BFn+BM.+G%E1%BB%8Di+G+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AH+v%C3%A0+BM.+Ch%E1%BB%A9ng+minh+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m+c%E1%BB%A7a+tam+gi%C3%A1c+ABC++c)+Cho+AB=30cm,+BH=18cm.+T%C3%ADnh+AH,AG++d)+T%E1%BB%AB+H+k%E1%BA%BB+HD+song+song+v%E1%BB%9Bi+AC(D+thu%E1%BB%91c+AB),+ch%E1%BB%A9ng+minh+ba+%C4%91i%E1%BB%83m+C,G,D+th%E1%BA%B3ng+h%C3%A0ng&id=248109
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Tia phân giác của góc A cắt BC tại E. a) Tính độ dài các đoạn thẳng BC, BE, EC. b) Kẻ đường trung tuyến AM, M BC . Từ M kẻ đường thẳng vuông góc với AC cắt AC tại N. Tính tỉ số AN AC . c) Kẻ AH BC (H BC) . Từ A kẻ đường thẳng vuông góc với AM cắt BC tại D. Chứng minh rằng AB là tia phân giác của góc DAH