Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hiển Vinh
Xem chi tiết
Trần Phúc
15 tháng 8 2018 lúc 20:40

\(\frac{\left(x+10\right)^2}{x}=\frac{x^2+2x+100}{x}\)

Vì \(x>0\) nên \(\left(x^2+2x+100\right)>0\forall x\)

Mà \(x^2+2x>0\)( vì x>0 )

\(\Rightarrow x^2+2x+100\ge100\)

Vậy GTNN của bt trên là 100

P/s: Cái này tui không chắc lắm ! Có gì sai mong bạn bỏ qua!

Quốc Sơn
Xem chi tiết
tthnew
19 tháng 7 2019 lúc 9:28

Em làm bài 2 nha!

\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)

+)\(A=0\Rightarrow x=\frac{3}{4}\)

+) A khác 0 thì (1) là pt bậc 2.

\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)

Vậy...

tthnew
19 tháng 7 2019 lúc 9:32

Bài 1: (bài nào nghĩ ra thì em làm trước)

C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1

Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)

\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2

Vậy Min C = 1 khi x = 2

Quốc Sơn
Xem chi tiết
Vân Anh
Xem chi tiết
Kaijo
Xem chi tiết
Linh Nhi
9 tháng 5 2020 lúc 21:13

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

ĐKXĐ: x≠1/4, x≠-1/4

\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)

⇒-12x-3=8x-2-3-6x

⇔8x-6x+12x=-3+2+3

⇔14x=2

⇔x=1/7(tmđk)

Vậy phương trình có nghiệm là x=1/7

b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)

ĐKXĐ: x≠0, x≠2

(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)

⇒10-2x+7x-14=4x-4+x

⇔-2x+7x-4x-x=-4-10+14

⇔0x=0

⇔ x∈R

Vậy phương trình có nghiệm là x∈R và x≠0, x≠2

c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)

ĐKXĐ: x≠0

(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3

⇔x4+x-x4+x=3

⇔2x=3

⇔x=3/2(tmđk)

Vậy phương trình có nghiệm là x=3/2

.........
Xem chi tiết

a: \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left\lbrack\left(x-1\right)^2+3\right\rbrack=-\left(x-1\right)^2-3\le-3\forall x\)

=>\(\frac{1}{-x^2+2x-4}\ge-\frac13\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

b: \(-4x^2+12x-13\)

\(=-\left(4x^2-12x+13\right)\)

\(=-\left(4x^2-12x+9+4\right)\)

\(=-\left\lbrack\left(2x-3\right)^2+4\right\rbrack=-\left(2x-3\right)^2-4\le-4\forall x\)

=>\(\frac{12}{-4x^2+12x-13}\ge\frac{12}{-4}=-3\forall x\)

Dấu '=' xảy ra khi 2x-3=0

=>2x=3

=>\(x=\frac32\)

c: Đặt \(A=\frac{x^2-4x-4}{x^2-4x+5}\)

\(=\frac{x^2-4x+5-9}{x^2-4x+5}\)

\(=1-\frac{9}{x^2-4x+5}\)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1\ge1\forall x\)

=>\(\frac{9}{\left(x-2\right)^2+1}\le\frac91=9\forall x\)

=>\(-\frac{9}{\left(x-2\right)^2+1}\ge-9\forall x\)

=>\(A=-\frac{9}{\left(x-2\right)^2+1}+1\ge-9+1=-8\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

e: Đặt \(B=\frac{x^2-2011}{4\left(x^2+1\right)}\)

\(=\frac14\cdot\frac{4x^2-8044}{4x^2+4}=\frac14\cdot\frac{x^2-2011}{x^2+1}=\frac14\left(\frac{x^2+1-2012}{x^2+1}\right)=\frac14\left(1-\frac{2012}{x^2+1}\right)\)

Ta có: \(x^2+1\ge1\forall x\)

=>\(\frac{2012}{x^2+1}\le2012\forall x\)

=>\(-\frac{2012}{x^2+1}\ge-2012\forall x\)

=>\(1-\frac{2012}{x^2+1}\ge-2012+1=-2011\forall x\)

=>\(\frac14\left(1-\frac{2012}{x^2+1}\right)\ge-\frac{2011}{4}\forall x\)

Dấu '=' xảy ra khi x=0

Hoa Nguyen
Xem chi tiết
Trịnh Thành Công
25 tháng 4 2017 lúc 21:21

a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

   \(84x+63-90x+30=175x+140+315\)

    93-6x=175x+455

     -362=181x

       x=-2

Trịnh Thành Công
25 tháng 4 2017 lúc 21:23

b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

   \(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)

      \(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

        \(\left(3x+1\right)\left(-x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Trịnh phương mai
Xem chi tiết