Tìm GTNN
a)\(A=\frac{x^2-4x+1}{x^2}\)
b)\(B=\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN:
a, \(\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
b, \(\frac{\left(x+10\right)^2}{x}\)vs x>0
\(\frac{\left(x+10\right)^2}{x}=\frac{x^2+2x+100}{x}\)
Vì \(x>0\) nên \(\left(x^2+2x+100\right)>0\forall x\)
Mà \(x^2+2x>0\)( vì x>0 )
\(\Rightarrow x^2+2x+100\ge100\)
Vậy GTNN của bt trên là 100
P/s: Cái này tui không chắc lắm ! Có gì sai mong bạn bỏ qua!
Tìm GTNN của các biểu thức sau:
A = \(\left(x^2-x\right)\left(x^2+3x+2\right)\)
B = \(x^4+\left(x-2\right)^2+6x^2\left(x-2\right)^2\)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\)
D = \(4x^2+4x-6\left|2x+1\right|+6\)
Tìm cả GTLN và GTNN
A = \(\frac{3-4x}{x^2+1}\)
Em làm bài 2 nha!
\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)
+)\(A=0\Rightarrow x=\frac{3}{4}\)
+) A khác 0 thì (1) là pt bậc 2.
\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)
Vậy...
Bài 1: (bài nào nghĩ ra thì em làm trước)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1
Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)
\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2
Vậy Min C = 1 khi x = 2
Bài 2 Tìm GTNN của các biểu thức sau:
B = \(\frac{2x^2-6x+5}{\left(X-1\right)^2}\)
A = \(4x^2+4x-6\left|2x+1\right|+6\)
Câu 1: TIìm GTLN, GTNN của:
a) \(B=\frac{4x^2+2x+1}{4x^2+1}\)
b)\(E=\frac{3x^2-8x+13}{x^2+1}\)
c)\(D=\frac{8x+3}{4x^2+1}\)
d)\(C=\frac{4x+1}{4x^2+2}\)
e)\(A=\frac{2x+1}{x^2+2}\)
Câu 2: Tìm GTLN của:
a) \(A=\frac{x^2+10}{2x^2+3}\)
b)\(B=\frac{3y^2-6y+27}{2y^2-4y+10}\)
Câu 3: Tìm GTNN của:
a)\(A=\frac{2x^2+6x+1}{x^2+2x+2}\)
b)\(B=\frac{x^2-2016}{4\left(x^2+1\right)}\)
1,Giải PT
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
b,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
c,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
ĐKXĐ: x≠1/4, x≠-1/4
⇔\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
⇔\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)
⇒-12x-3=8x-2-3-6x
⇔8x-6x+12x=-3+2+3
⇔14x=2
⇔x=1/7(tmđk)
Vậy phương trình có nghiệm là x=1/7
b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)
ĐKXĐ: x≠0, x≠2
(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)
⇒10-2x+7x-14=4x-4+x
⇔-2x+7x-4x-x=-4-10+14
⇔0x=0
⇔ x∈R
Vậy phương trình có nghiệm là x∈R và x≠0, x≠2
c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)
ĐKXĐ: x≠0
(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3
⇔x4+x-x4+x=3
⇔2x=3
⇔x=3/2(tmđk)
Vậy phương trình có nghiệm là x=3/2
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
a.\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
b.\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c.\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)
d.\(\left|x-4\right|+3x=5\)
a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(84x+63-90x+30=175x+140+315\)
93-6x=175x+455
-362=181x
x=-2
b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Giải các phương trình sau:
a) \(\frac{4}{x-1}-\frac{5}{x-2}=-3\)
b) \(3x-\frac{1}{x-2}=\frac{x-1}{2-x}\)
c) \(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
d) \(\frac{2}{x^2-4}-\frac{1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
e) \(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x-2}\right)\)
f) \(\frac{3}{4x\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
g) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
1. TÌm GTNN:
a, M=\(\frac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\frac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\frac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\frac{4x^3}{x^2+1}\)
c, C=\(\frac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\frac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0