Tìm giá trị nguyên của biến x để biểu thức B=\(\frac{8-x}{x-3}\) có giá trị lớn nhất
a) Tìm các giá trị nguyên của \(x\) để biểu thức M=\(\dfrac{8x+1}{4x-1}\)nhận giá trị nguyên
b) Tìm giá trị nguyên của biến \(x\) để biểu thức \(A=\dfrac{5}{4-x}\)có giá trị lớn nhất
c) Tìm giá trị nguyên của biến \(x\) để biểu thức \(B=\dfrac{8-x}{x-3}\)có giá trị nhỏ nhất
(Hơi khó mọi người giúp mình với ạ)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)
\(\Leftrightarrow8x-2+3⋮4x-1\)
mà \(8x-2⋮4x-1\)
nên \(3⋮4x-1\)
\(\Leftrightarrow4x-1\inƯ\left(3\right)\)
\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
Vậy: \(x\in\left\{0;1\right\}\)
Tìm giá trị nguyên của biến x để biểu thức \(B=\frac{8-x}{x-3}\)có giá trị nhỏ nhất
-Để B có giá trị nhỏ nhất thì 8-x lớn nhất và x-3 nhỏ nhất
+) Để 8-x lớn nhất thì x nhỏ nhất => x=0
Thay vào ta có \(\frac{8-0}{0-3}=\frac{8}{-3}\)
Vậy x=0
tìm giá trị nguyên của biến x để biểu thức A=\(\frac{2}{6-x}\)có giá trị lớn nhất
Để phân số \(A\)xác định được \(\Leftrightarrow6-x\ne0\Rightarrow x\ne6\)
Vì \(x\in Z\Rightarrow6-x\in Z\)
Để \(A_{max}\Leftrightarrow6-x\)nhỏ nhất \(\left(6-x>0\right)\)
\(\Rightarrow6-x=1\Rightarrow x=6-1=5\Rightarrow A=\frac{2}{6-5}=\frac{2}{1}=2\)
Vậy \(A_{max}\)tại \(x=5\)
tìm giá trị nguyên của biến x để biểu thức A=\(\frac{5}{4-x}\)có giá trị lớn nhất ?
Để A đạt giá trị nhỏ nhất thì 4-x phải nhỏ nhất
\(\Rightarrow\frac{5}{4-x}\le5\Rightarrow4-x\)đạt giá trị lớn nhất là 5
\(\Rightarrow5:\left(4-x\right)=5\)
\(\Rightarrow4-x=1\Rightarrow x=3\)
vậy x=3 để A đạt giá trị lớn nhất
đây là cách của mk ;khi bạn làm bài sửa ngôn từ cho hay tí là ok
tìm giá trị nguyên của biến x để biểu thức B=\(\frac{8-x}{x-3}\) có giá trị nhỏ nhát
Để B đạt Min
\(\Rightarrow\frac{8-x}{x-3}=\frac{11-\left(x-3\right)}{x-3}=\frac{11}{x-3}-1\)đạt min
hay 11/ x-3 đạt min
GTLN của x-3 có số đối là 3-x là lớn nhất
--> 3-x nhỏ nhất
<--> 3-x = 1
x=2
Vậy................
1) Tìm giá trị nguyên của biến x để biểu thức
a, A=\(\frac{2}{6-x}\) có giá trị lớn nhất
b,B=\(\frac{8-x}{x-3}\) có giá trị nhỏ nhất
2)Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau
a,\(\left|x-2\right|+\left|x+3\right|\)
b,\(\left(2x^2+3\right)^2-4\)
c, \(4x^2-4x+3\)
Tìm giá trị ngyên của biến x để biểu thức
a) \(A=\frac{2}{6-x}\)có giá trị lớn nhât
b) \(B=\frac{8-x}{x-3}\)có giá trị bé nhất
Xét biểu thức A = \(\frac{1}{15}\cdot\frac{225}{x+2}+\frac{3}{14}\cdot\frac{196}{3\cdot x+6}\)
a) Rút gọn biểu thức A.
b) Tìm các giá trị của x để A có giá trị là số nguyên.
c) Trong các giá trị của A. Tìm giá trị lớn nhất và giá trị nhỏ nhất.
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a, A=15/x+2 +42/3x+6
=45/3x+6 + 42/3x+6
=87/3x+6 = 29x+2
b,để A có giá trị là số nguyên thì 29 phải chia hết cho x+2 hay x+2 thuộc tập hợp ước của 29 mà Ư(29)={29;-29;1;-1} .
Xét từng trường hợp .C, lấy trường hợp lớn nhất và bé nhất
\(B=\left(1-\frac{x^2}{x+2}\right)\cdot\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
a, Tìm điều kiện của x để giá trị của biểu thức B được xác định
b,Rút gọn biểu thức B
c,Tính giá trị của B khi x=-3
d, Tìm giá trị của x để biểu thức B có giá trị lớn nhất. Tìm giá trị lớn nhất đó
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1