A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
so sánh A và B
So sánh:
A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)và B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)
Vậy \(A>B\)
so sánh A=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
Do 2009\(^{2010}\)-2 < 2009\(^{2011}\)-2 \(\Rightarrow\)B<1
Theo đề bài ta có:
B= \(\frac{2009^{2010}-2}{2009^{2011}-2}\)< \(\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)= \(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)= \(\frac{2009.\left(1+2009^{2009}\right)}{2009.\left(1+2009^{2010}\right)}\)= \(\frac{2009^{2009}+1}{2009^{2010}+1}\)= A \(\Rightarrow\)B<A
So sánh : \(A=\frac{2009^{2009}+1}{2009^{2010}+1}\)và \(B=\frac{2009^{2010}-2}{2009^{2011}-2}\)
Giải hẳn ra nhé
2009A=2009^2010+2009/2009^2010+1 2009B=2009^2011-4018/2009^2011-2
2009A=1 + 2009/2009^2010+1 B=1 - 4016/2009^2011-2
mình viết tách ra cho khỏi nhầm
vì A>1 và B<1
nên A>B
VẬY A>B AND kết bạn nha
A=2009^2009+1/2009^2010+1 B=2009^2010-2/2009^2011-2
A=(2009^2009+1).10/2009^2010+1 B=(2009^2010-2).10/2009^2011-2
A=2009^2010+10/2009^2010+1 B= 2009^2011-20/2009^2010-2
A=(2009^2010+1)+9/2009^2010+1 B=(2009^2011-2)-18/2009^2010-2
A=1 + 9/2009^2010+1 B=1+(-18/2009^2010-2)
Vì 9/2009^2010+1 > (-18/2009^2010-2)
=>1 + 9/2009^2010+1>1+(-18/2009^2010-2)
Hay 2009^2009+1/2009^2010+1 > 2009^2010-2/2009^2011-2
Vậy A>B
NO!!!!!!!!!!!!!!!!!!!!BÀI MÌNH SAI NHA
So sánh \(A=\frac{2009^{2009}+1}{2009^{2010}+1}\)và \(B=\frac{2009^{2010}-2}{2009^{2011}-2}\)
B = 2009^2010 - 2 / 2009^2011 - 2 < 2009^2010 - 2 + 2011 /2009^2011 - 2 + 2011
= 2009^2010 + 2009 / 2009^2011 + 2009
= 2009 ( 2009^2009 + 1) / 2009(2009^2010 + 1)
= 2009^2009 + 1 / 2009^2010 + 1 = A
=> B < A
B=20092010-2/20092011-2<20092010-2+2011/20092011-2+2011=20092010+2009/20092011+2009 =2009.(20092009+1)/2009.(20092010+1)=20092009+1/20092010+1
Suy ra A>B
A=\(\frac{2009^{2009}+1}{2009^{2010+1}}\)và B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
so sánh
nhân A 2009 lần và B 2009 lần mà so sánh
ta có:
B=(2009^2010-2)/(2009^2011-2)<1
=>(2009^2010-2)/(2009^2011-2)<(2009^2010-2)+2011/(2009^2011-2)+2011=(2009^2010+2009)/(2009^2011+2009)
=[2009*(2009^2009+1)]/[2009*(2009^2010+1)]=(2009^2009+1)/(2009^2010+1)=A
Vậy A=B
Đúng thì !
gộp số 2009 (số to to) ấythành 1 , sau đấy gộp số 1+1=2
sau đấy lấy 2009 chia cho hiệu của 2009-2010 +2
sau đó ta có 2009:-1+2
tính tông nó ra!!! Thế là hết bài
Bài giải đây nhé:
A= (20092009+1):(20092010+1) ( chia là phân số nhé)
A= (20092009):(20092010)+2
A= 2009:(2009-2010)+2
A= 2009:(-1)+2
A= (-2009)+2
A= -2007
So sánh A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So sánh: A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)
So sánh A = \(\frac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\frac{2009^{2010}-2}{2009^{2011}-2}\)
CỨU EM VS MẤY ANH CHỊ
toán lớp 6 í
Ta có B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)<1
=>\(\frac{2009^{2010}-2}{2009^{2011}-2}\)<\(\frac{2009^{2010}-2+3}{2009^{2011}-2+3}\)=\(\frac{2009^{2010}+1}{2009^{2011}+1}\)(1)
Mà \(\frac{2009^{2010}+1}{2009^{2011}+1}\)<1
=> \(\frac{2009^{2010}+1}{2009^{2011}+1}\)<\(\frac{2009^{2010}+1+2008}{2009^{2011}+1+2008}\)=\(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)=\(\frac{2009\cdot\left(2009^{2009}+1\right)}{2009\cdot\left(2009^{2010}+1\right)}\)=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)=A(2)
Từ (1)và(2)=>B<\(\frac{2009^{2010}+1}{2009^{2011}+1}\)<A=>B<A hay A>B