so sánh 2^250 vs 3^100
so sánh 2^250 vs 3^100so sánh 2^250 vs 3^100
Ta có :
`2^250 = ( 2^2 )^{125} = 4^{125}`
Do `3^{100} < 4^{100}<4^{125} => 3^{100}<4^{125}=>2^{250}>3^{100}`
Vậy `2^{250}>3^{100}`
Xét 25>24=16 mà 16>9=32
⇒ 25>32
⇒ (25)50>(32)50
⇒ 2250>3100
Vậy 2250>3100
So sánh :
25 ^100 và 4 ^250
\(4^{250}=\left(2^2\right)^{250}=2^{500}=\left(2^5\right)^{100}=32^{100}\)
Vì \(32^{100}>25^{100}\)nên \(4^{250}>25^{100}\)
So sánh
\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}vs\frac{3}{4}\)
cho A=(1/2^2-1).(1/3^2-1)....(1/100^2). So sánh A vs -1/2
\(A=\left(\frac{1}{2^2}-1\right)\times\left(\frac{1}{3^2}-1\right)\times...\times\left(\frac{1}{100^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)\times...\times\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{\left(2^2-1\right)\times\left(3^2-1\right)\times...\times\left(100^2-1\right)}{2^2\times3^2\times...\times100^2}\)
\(=-\frac{\left(1\times3\right)\times\left(2\times4\right)\times...\times\left(99\times101\right)}{2^2\times3^2\times...\times100^2}\)
\(=-\frac{\left(1\times2\times...\times99\right)\times\left(3\times4\times...\times101\right)}{\left(2\times3\times...\times100\right)\times\left(2\times3\times...\times100\right)}\)
\(=-\frac{1\times101}{100\times2}=-\frac{101}{200}< -\frac{1}{2}\)
so sánh
a, A = ( 1 - 1/2 ) x ( 1 - 1/3 ) x .....x ( 1 - 1/19 ) x ( 1 - 1/20 )
So sánh A vs 1/21
b, B = ( 1 - 1/4 ) x ( 1 - 1/9 ) x ( 1- 1/16 ) x .....x ( 1 - 1/81 ) x ( 1 - 1/100 )
So sánh B vs 11/21
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{18}{19}\cdot\frac{19}{20}\)
\(A=\frac{1}{20}\)
Vì 20 < 21 nên 1/20 > 1/21
Vậy ............
So sánh giá trị của biểu thức
A= 3/4 +2/9 +15/16+...+99/100 vs các số 8 và 9.
So sánh :10010+1/10010-1 và 10010-1/10010-3
giúp mk vs!
Áp dụng a /b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)
Ta có:
\(\frac{100^{10}-1}{100^{10}-3}>\frac{100^{100}-1+2}{100^{10}-3+2}\)
\(>\frac{100^{100}+1}{100^{10}-1}\)
Áp dụng a/b > 1 => a/b > a + m/b ( a; b; m thuộc N*
so sánh 2 số hữu tỉ sau -99/100 vs -102/101
ban co the so sanh bang cach quy dong mau hoac tu vi cac cach khac ko giai dc.
Cho A=1+2+22+23+.......+2100 và B=2101 .So sánh A và B
giúp mik vs,thanks
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B