Cho điểm M thuộc nửa đường tròn có đường kính AB (M khác A và B). Ta lấy điểm I nằm giữa M và B, kẻ IH vuông góc với cạnh AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại điểm K. Chứng minh rằng
Cho điểm M thuộc nửa đường tròn đường kính AB[M khác A,B].Lấy điểm I nằm giữa M và B, kẻ IH vuông góc với AB tại H.Đoạn thẳng AI cắt đoạn thẳng MH tại K.Chứng minh rằng góc B + góc AKM =2.góc AIM.
minhf đang cần gấp.ai nhanh 5 tick
Cho M thuộc nửa đường tròn O đường kính AB. Lấy I nằm giữa M và B, kẻ IH vuông góc với AB tại H. Đoạn thẳng AI cắt MH tại K. Chứng minh rằng: \(\widehat{B}+\widehat{AKM}=2\widehat{AIM}\)
bài 1 :Cho điểm M thuộc nửa đường tròn đường kính AB (M khác A và B). Lấy điểm I nằm giữa M và B, kẻ IH vuông góc với AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại K. Chứng minh rằng
bài 2 : Cho đường tròn (O), từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC (B, C là hai tiếp điểm). Gọi M là giao điểm của OA và BC, D là một điểm nằm trên đường tròn (O) sao cho D không nằm trên đường thẳng OA, kẻ dây cung DE đi qua M. Chứng minh tứ giác ADOE nội tiếp.
Bài 1 thiếu đề
Bài 2 Mình không vẽ được hình nên bạn thông cảm
Xét tam giác vuông ACO có \(CM\perp AO\)
=> \(OM.OA=OC^2=OD^2\)
=> \(\frac{OD}{OA}=\frac{OM}{OD}\)
=> tam giác MDO đồng dạng tam giác DAO
=> MDO=OAD
Mà MDO=DEO
=> OAD=DEO
=> tứ giác ADOE nội tiếp
Vậy tứ giác ADOE nội tiếp
cảm ơn bạn nhìu nhé b1 đủ đề đó ko thiếu đâu
à mình quên b1 thiếu , đầy đủ đây nhá bạn giúp mình : Cho điểm M thuộc nửa đường tròn có đường kính AB (M khác A và B). Ta lấy điểm I nằm giữa M và B, kẻ IH vuông góc với cạnh AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại điểm K. Chứng minh góc B + góc AKM = 2 góc AIM
Cho nửa đường tròn tâm O, đường kính AB và M là một điểm tùy ý trên nửa đường tròn (M khác A, B). Lấy điểm I thuộc đoạn thẳng MB (I khác B, M). Kẻ IH vuông góc với AB (H thuộc AB). Tia AI cắt nửa đường tròn tại N. Tia AM cắt tia BN tại C
b)Gọi K là giao điểm của tia BN và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AICK nội tiếp được đường tròn, chứng minh MH vuông góc với MN.
c) Chứng minh rằng: IH/ IC+ IA/ IN+ IB/ IM >6
b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.
Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.
Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)
Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).
Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).
c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).
Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).
Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).
Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).
Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).
Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).
Vậy ta có đpcm.
Cho điểm M thuộc nửa đường tròn có đường kính AB (M khác A và B). Ta lấy điểm I nằm giữa M và B, kẻ IH vuông góc với cạnh AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại điểm K. Chứng minh rằng
Cho nửa đường tròn tâm (O) có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax , By của nửa đường tròn (O) tại A và B (Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D
1) Chứng minh tam giác COD vuông tại O
2) Chứng minh AC.BD = R2
3)Kẻ MH vuông góc AB (H thuộc AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH
giúp mik với
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax. By của nửa đường tròn (O) tại A, B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt tia Ax và By theo thứ tự tại C và D.
A) chứng minh AC. BD=R2
B) kẻ MH vuông góc AB(H thuộc AB) chứng minh :OC song song với BM.
C) chứng minh rằng BC đi qua trung điểm đoạn MH