Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khải Đỗ
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Akai Haruma
5 tháng 8 2020 lúc 18:05

a)

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2$

$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

$=(x-1)^3(x+1)$

b)

$a^6-a^4+2a^3+2a^2$

$=a^4(a^2-1)+2a^2(a+1)$

$=a^4(a-1)(a+1)+2a^2(a+1)$

$=(a+1)[a^4(a-1)+2a^2]$

$=a^2(a+1)[a^2(a-1)+2]$

$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$

$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$

$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$

c)

$x^4+x^3+2x^2+x+1$

$=(x^4+2x^2+1)+(x^3+x)$

$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$

Akai Haruma
5 tháng 8 2020 lúc 18:08

d)

$x^4+2x^3+2x^2+2x+1$

$=(x^4+2x^3+x^2)+(x^2+2x+1)$

$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$

$=(x+1)^2(x^2+1)$

e)

$x^2y+xy^2+x^2z+y^2z+2xyz$

$=xy(x+y)+z(x^2+y^2)+2xyz$

$=xy(x+y)+z(x^2+y^2+2xy)$

$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$

f)

$x^5+x^4+x^3+x^2+x+1$

$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$

$=(x+1)(x^4+x^2+1)$

$=(x+1)[(x^4+2x^2+1)-x^2]$

$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$

Nguyễn Ngọc k10
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2023 lúc 10:12

a: =-1/5x^5y^2

b: =-9/7xy^3

c: =7/12xy^2z

d: =2x^4

e: =3/4x^5y

f: =11x^2y^5+x^6

Xem chi tiết

help me ai nhanh nhất mik tích cho

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 18:39

a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)

\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)

Heo Mập
Xem chi tiết
Siêu Phẩm Hacker
15 tháng 9 2019 lúc 14:07

Tìm x,y 

Ta có: \(\frac{x}{3}=\frac{y}{4}\)

\(\Rightarrow y=\frac{4x}{3}\)  ( 1 )

Ta có: \(\frac{x}{3}=\frac{z}{5}\)

\(\Rightarrow z=\frac{5x}{3}\)   ( 2 ) 

Theo đề bài: 2x + y = 2z  ( 3 ) 

Thay ( 1 ), ( 2 ) vào ( 3 ) ta được một phương trình mới: 

\(2x+\frac{4x}{3}=2.\left(\frac{5x}{3}\right)\)

\(\Leftrightarrow\frac{6x+4x}{3}=\frac{10x}{3}\)

\(\Leftrightarrow6x+4x=10x\)

\(\Leftrightarrow10x=10x\)

\(\Leftrightarrow x=x\)  ( Vô số nghiệm ) 

\(\Rightarrow x\in R\)    ( R là số thực, có nghĩa là tất cả các số trong vũ trụ này nha ) 

Ta có: \(x\in R\) 

\(\Rightarrow y\in R\)

Vậy \(x,y\in R\)

Linh Nguyễn
Xem chi tiết
Không Cần Tên
Xem chi tiết
 Mashiro Shiina
24 tháng 8 2017 lúc 21:25

a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)

b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)

\(2\ne3\ne4\) nên \(x\in\varnothing\)

c)

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)

Với mọi \(x\ge0\) ta có:

\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)

\(\Leftrightarrow9x+90=x-1\)

\(\Leftrightarrow9x=x-89\)

\(\Leftrightarrow-8x=89\)

\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)

Với mọi \(x< 0\) ta có:

\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)

\(\Leftrightarrow-9x-90=x-1\)

\(\Leftrightarrow-9x=x+89\)

\(\Leftrightarrow-10x=89\)

\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)

d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2018 lúc 4:43