Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
Cho các số dương x, y, z thỏa mãn: 1/x+1/y+1/z=4. CM: 1/2x^2+y^2+z^2+1/x^2+2y^2+z^2+1/x^2+y^2+2z^2 bé hơn hoặc bằng 1
Cho các số thực x, y, z thỏa mãn: \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\) .
Tính giá trị biểu thức: \(x^{15}+y^{10}+z^{2018}\).
Mình đang rất gấp, ai giúp mình với,,,
Cho x, y, z>0. Chứng minh rằng:
\(\dfrac{x}{x+2y+3z}+\dfrac{y}{y+2z+3x}+\dfrac{z}{z+2x+3y}\ge\dfrac{1}{2}\)
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
B1: A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a) Rút gọn
b) Tìm x thuộc Z để A nguyên
c) Tính A với x=-2; x=-3
d) Tìm x dể A=1
B2: Phân tích thành nhân tử
a) x2-2xy-4+y2
b) x2-4x+3
c) 9x2(x-y)-x+y
B3: Rút gọn
a) (x-2)3-(x+2)3-(x-1)(x2+x+1)
b) (5x+3y)(5x-3y)+(4x-3y)2
B4: P(x)=x4+x3+mx2-3x+5
a) Khi m=4, thực hiện phép chia P(x) cho x2-x+1
b) Tìm m để P(x)⋮(x-1)
Cho\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính:
\(C=\left(\dfrac{x^2+y^2}{x^2y^2}-z^2\right)\left(\dfrac{y^2+z^2}{y^2z^2}-x^2\right)\left(\dfrac{z^2+x^2}{z^2x^2}-y^2\right)\)
cho x,y,z dương thỏa mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\). tìm GTNN và GTLN của \(P=\dfrac{2x+z}{x+2z}\)
Cho x,y,z là số đo ba cạnh của 1 tam giác, chứng minh: \(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)