Tìm giá trị x, y thỏa mãn :
\(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
Bài 1
a,So sánh hai số sau \(4^{127}\)và \(81^{43}\)
b, Tìm số nguyên x thỏa mãn \(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{x.\left(x+1\right):2}=\frac{2015}{336}\)
Bài 2
Cho phân số \(A=\frac{6n+1}{4n+3}\)(với b nguyên)
a Tìm giá trị n nguyên âm để A có giá trị là số nguyên
b, Tìm giá trị n để A là phân số không rút gọn được
Bài 3
a,Tìm các cặp giá trị x,y nguyên thỏa mãn \(\frac{x}{8}-\frac{2}{2y+3}=\frac{7}{12}\)
b, Cho phép toán * thỏa mãn với hai số tự nhiên a và b ta có a*b= 3a+\(b^a\)Tìm các số nguyên tố x,y sao cho 2*x+y*4-8 cũng là số nguyên tố
cho 2 số thực dương x,y thỏa mãn x+2y ≥ 8
tìm giá trị nhỏ nhất của biểu thức P = x + y + \(\frac{3}{x}+\frac{9}{2y}\)
Cho các số x, y dương thỏa mãn: \(x^2+y^2=8\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{1}{\sqrt{1+x^3}}+\frac{1}{\sqrt{1+y^3}}\)
ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)
thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)
Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)
\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)
Dấu ''=''xảy ra khi x=y=2
\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)
Cho hai số dương x và y thỏa mãn điều kiện x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: \(8\left(x^8+y^8\right)+\frac{3}{xy}\)
Cho hai số thực dương x,y thỏa mãn \(\frac{x}{2}+\frac{8}{y}\le2\)
Tìm giá trị nhỏ nhất cùa biểu thức \(A=\frac{x}{y}+\frac{2y}{x}\)
Tìm các số nguyên x,y thỏa mãn \(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\Rightarrow\frac{1}{y}=\frac{x-3}{8}\)
\(\Rightarrow y\left(x-3\right)=8\)
Ta có bảng sau:
y | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
x - 3 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | 11 | 4 | -5 | 2 | 7 | 5 | -1 | 1 |
Vậy các cặp số (x,y) là: (1,11) ; (8,4) ; (-1,-5) ; (-8,2) ; (2,7) ; (4,5) ; (-2,-1) ; (-4,1)
a) Cho biểu thức
P= ($\frac{x}{x-1}$- $\frac{1}{\sqrt{x}-1}$- $\frac{1}{\sqrt{x}+1}$).($\frac{4\sqrt{x}-8}{x\sqrt{x}-4x+4\sqrt{x}}$), với x>0, x $\neq$1, x $\neq$4. Tìm các số nguyên x để P nhận giá trị nguyên dương.
b) Cho 3 số thực x,y,z thỏa mãn điều kiện: x+y+z=0 và xyz $\neq$0. Tính giá trị biểu thức
P= $\frac{x^2}{y^2+z^2-x^2}$ +$\frac{y^2}{z^2+x^2-y^2}$ +$\frac{z^2}{x^2+y^2-z^2}$
a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)
Để P nguyên dương thì x-1 thuộc {1;4;2}
=>x thuộc {2;5;3}
b: x+y+z=0
=>x=-y-z; y=-x-z; z=-x-y
\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)
\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)
\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)
Cho x,y là các số dương thỏa mãn 2x+3y=7 . Tìm giá trị bé nhất của biểu thức Q= \(\frac{8}{x}\)+ \(\frac{3}{y}\)
Áp dụng bđt AM-GM cho 2 số dương ta có:
Q = \(\frac{8}{x}+2x+\frac{3}{y}+3y\)- (2x + 3y) \(\ge2\sqrt{\frac{8}{x}.2x}+2\sqrt{\frac{3}{y}.3y}-7\)
\(Q\ge2.4+2.3-7=7\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{8}{x}=2x\\\frac{3}{y}=3y\end{cases}}\)=> x = 2; y = 1 (a;b dương)