Cho tam giác ABC vuông tại A, H là hình chiếu trên đường thẳng BC. CMR AH+AB>AB+AC
Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của điểm A trên đường thẳng BC. CMR: AH+BC>AB+AC
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A và có đường cao AH
a) CMR : tam giác ABC đồng dạng với tam giác HBA
b) Cho biết AB=8cm ; AC=15cm;BC=17cm . Tính độ dài đoạn thẳng AH
c) Gọi M,N lần lượt là hình chiếu của H trên AB ; AC . CM : AM.AB=AN.AC
Cho tam giác không vuông ABC (AB < AC), đường cao AH. Gọi E, F theo thứ tự là hình chiếu vuông góc của H trên AB và AC. Đường thằng È cắt đường thẳng BC tại D. Trên nửa mp bờ CD chứa A. Vẽ nửa đường tròn đường kính CD. Qua B vẽ đường thẳng vuông góc với CD cắt nửa đường tròn trên tại K.
a. CMR: BEFC là tứ giác nội tiếp.
b. CMR: tam giác DEK đồng dạng với tam giác DKF.
cho tam giác abc vuông tại a đường cao ah , biết ab/bc = 0,6 , ac=16cm
a. tính ab,ac,bc,hc
b. gọi m,n là hình chiếu của h lên ab,ac. cmr tam giác AMN và tam giác ABC đồng dạng
a: Xét ΔABC vuông tại A có sin C=AB/BC=3/5
=>cos C=căn 1-(3/5)^2=4/5
=>AC/BC=4/5
=>BC=20(cm)
\(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)
ΔABC vuông tại A có AH là đường cao
nên CH*CB=CA^2
=>CH*20=16^2=256
=>CH=12,8(cm)
b: ΔHAB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔHAC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN đồng dạng với ΔACB
Cho tam giác ABC vuông tại A (AB < AC ) có AH là đường cao ( H thuộc BC ) Gọi D và E lần lượt là hình chiếu của H trên AB và AC a) CMR : Tứ giác AEHD là hình chữ nhật b) CMR : ABH đông dạn AHD C) cho AB=9 cm và Ac = 12 cm. Tinh BC và diện tích ADHC d) Gọi M là giao điểm BE và CD . CMR BD . CM = EC. BM
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồng dạng với ΔAHB
c: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Cho tam giác ABC vuông tại A( AB<AC), đường cao AH. D,E lần lượt là hình chiếu của H trên AB, AC. Đường thẳng qua A vuông góc với DE cắt BC tại O
a) O là trung điểm của BC
b) Kẻ đường thẳng vuông góc với OA tại A cắt BC tại K. Chứng minh AB là phân giá của góc KAH
c) AB^2=BH.BC, AD.BD+AE.EC<OA^2
a:
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc OAC+góc AED=90 độ
=>góc OAC+góc AHD=90 độ
=>góc OAC+góc ABC=90 độ
=>góc OAC=góc OCA
=>OA=OC và góc OBA=góc OAB
=>OA=OB=OC
=>O là trung điểm của BC
b: góc KAB+góc OAB=90 độ
gócHAB+góc OBA=90 độ
mà góc OAB=góc OBA
nên góc KAB=góc HAB
=>AB là phân giác của góc HAK
c: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E và F là hình chiếu của H trên trên AB và AC; O là trung điểm của BC và AO cắt EF tại I.
a) CMR: \(\dfrac{AH^2}{BE.CF}=\dfrac{AB}{AC}+\dfrac{AC}{AB}\)
b) Tính \(\dfrac{AI}{HB}+\dfrac{AI}{HC}\)