Tìm n là số nguyên sao cho:
\(n^2\)+3n-1⋮n+2
Tìm số nguyên n sao cho:
a) (n+1)/(n-2) là số nguyên âm.
b) (n+7)/(3n-1) là số nguyên.
c) (3n+2)/(4n-5) là số tự nhiên.
a: ĐKXĐ: n<>2
Đặt \(A=\frac{n+1}{n-2}\)
Để A là số nguyên âm thì \(\begin{cases}n+1\vdots n-2\\ \frac{n+1}{n-2}<0\end{cases}\Rightarrow\begin{cases}n-2+3\vdots n-2\\ -1
=>\(\begin{cases}3\vdots n-2\\ -1
=>n=1
b: \(\frac{n+7}{3n-1}\) là số nguyên
=>n+7⋮3n-1
=>3n+21⋮3n-1
=>3n-1+22⋮3n-1
=>22⋮3n-1
=>3n-1∈{1;-1;2;-2;11;-11;22;-22}
=>3n∈{2;0;3;-1;12;-10;23;-21}
=>n∈{2/3;0;1;-1/3;4;-10/3;23;-7}
mà n là số nguyên
nên n∈{0;1;4;-7}
c: \(\frac{3n+2}{4n-5}\) là số tự nhiên
=>\(\begin{cases}3n+2\vdots4n-5\\ \frac{3n+2}{4n-5}\ge0\end{cases}\Rightarrow\begin{cases}12n+8\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)
=>\(\begin{cases}12n-15+23\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\Rightarrow\begin{cases}23\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)
=>\(\begin{cases}4n-5\in\left\lbrace1;-1;23;-23\right\rbrace\\ \left[\begin{array}{l}n>\frac54\\ n<=-\frac23\end{array}\right.\end{cases}\Rightarrow\begin{cases}n\in\left\lbrace\frac12;1;7;-\frac92\right\rbrace\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)
=>n=7
Tìm số nguyên sao cho
n+3/n+2 là số nguyên âm
n+7/3n-1 là số nguyên
3n+2/3n-5 là số tự nhiên
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
| 3n - 5 | 1 | 7 |
| 3n | 6 | 12 |
| n | 2 tm | 4 tm |
3. tìm số nguyên n sao cho
a) n+3/ n -2 là số nguyên
b) n+7/ 3n -1 là số nguyên
c)3n+2/ 4n-5 là số nguyên
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
| n -2 | 1 | -1 | -5 | 5 |
| n | 3 | 1 | -3 | 7 |
a)Tìm các số nguyên n sao cho n+2 là ước của n+7
b)Tìm các số nguyên n sao cho n+1 là bội của n-7
c) Tìm các số nguyên n để 3n-1 là bội của n-2
Tìm số nguyên n sao cho:
a) n + 3/n - 2 là số nguyên âm
b) n + 7/3n - 1 là số nguyên
c) 3n + 2/4n - 5 là số tự nhiên
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
tìm n sao cho 3n : n^2+1 là số nguyên
Để 3n : n^2 + 1 là số nguyên
=> 3n chia hết cho n^2 + 1
=> 3n^2 chia hết cho n^2 + 1
3n^2 + 3 - 3 chia hết cho n^2 + 1
3.(n^2 + 1) - 3 chia hết cho n^2 + 1
mà 3.(n^2 +1) chia hết cho n^2 + 1
=> 3 chia hết cho n^2 + 1
=>...
bn tự lập bảng r xét giá trị nha
Tìm các số nguyên n sao cho:
a) n+20 chia hết cho n+2
b) 2n + 1 là bội của 3n - 3
c) 3n - 2 là ước của 4n + 5.
a: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
hay \(n\in\left\{-1;-3;0;-4;1;-5;4;-8;7;-11;16;-20\right\}\)