Cho a,b,c≥ 0 thoả mãn aˆ2+bˆ2+cˆ2=8.CMR:
4(a+b+c-4)≤abc
$\rm Cho\ a,b,c \ge 0 .Thoả \ mãn \ ab+bc+ac=abc .Chứng \ minh\ a^{2}+b^{2}+c^{2}+5abc \ge 8$
`b)` Cho` a,b,c>=0,ab+bc+ca+abc=4`
CMR:`a^2+b^2+c^2+5abc>=8`
a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)
Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)
\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)
b.
\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)
\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)
\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)
- TH1: nếu \(a+b+c\ge4\)
Ta có: \(ab+bc+ca=4-abc\le4\)
\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)
(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)
- TH2: nếu \(3\le a+b+c< 4\)
Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)
\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)
Áp dụng BĐT Schur:
\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)
\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)
(Dấu "=" xảy ra khi \(a=b=c=1\))
Cho a, b, c > 0 thỏa mãn abc = 8. CMR:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)
BĐT bị ngược dấu, BĐT đúng phải là:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)
Cho a, b, c > 0 thoả mãn 1/a +1/b 1/c = 4
CMR 1/2a+b+c + 1/a+2b+c +1/a+b+2c < 1
Cho a,b,c > 0 thoả mãn abc<= 1 CMR : \(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge a+b+c\)
cho 3 số a, b, c thoả mãn 0 < a, b, c < 1.CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{3}{3+abc}\)
Cho a,b,c>0 thoả mãn a+b+c=1. CMR:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\ge30\)
Ta có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)
DO:
\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)
\(\Rightarrow DPCM\)
Tích t vs ku
cho các số thực a,b,c thoả mãn \(a^2+b^2+c^2+abc=4\)
CMR \(ab+bc+ca-abc\le2\)
Dựa vào điều kiện xuy ra được trong 3 xô: \(\left(1-a\right);\left(1-b\right);\left(1-c\right)\)co 2 xô cùng dâu. Giả xư đo là \(\left(1-a\right);\left(1-b\right)\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\)
Ta lại co:
\(4=a^2+b^2+c^2+abc\ge c^2+2ab+abc\)
\(\Leftrightarrow ab\left(2+c\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Quay lại bài toan ta co:
\(ab+bc+ca-abc\le2+\text{}\left(bc+ca-abc-c\right)=2-c\left(1-a\right)\left(1-b\right)\le2\)
Cho các số nguyên a,b,c thoả mãn a=b+c
CMR a^4+b^4+c^4 gấp đôi 1 số chính phương
Ta có:
a = b + c
\(\Leftrightarrow a^4=b^4+4b^3c+6b^2c^2+4b^3c+c^4\)
Từ đây ta có
a4 + b4 + c4 = b4 + 4b3 c + 6b2 c2 + 4bc3 + c4 + b4 + c4
= 2[(b4 + 2b2 c2 + c4) + 2(cb3 + bc3) + b2 c2]
= 2[(b2 + c2)2 + 2bc(b2 + c2) + b2 c2]
= 2(b2 + c2 + bc)2
\(\Rightarrow\)ĐPCM