Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2021 lúc 16:54

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

Dương Gia Linh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 12:03

BĐT bị ngược dấu, BĐT đúng phải là:

\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)

bùi thanh huyền
Xem chi tiết
zZz Hóng hớt zZz
17 tháng 1 2016 lúc 9:53

bấm vào chữ 0 đúng sẽ ra đáp án 

An Vy
Xem chi tiết
Tăng Ngọc Đạt
Xem chi tiết
Anh Quốc
Xem chi tiết
Lê Quốc Vương
Xem chi tiết
Đen đủi mất cái nik
9 tháng 9 2018 lúc 21:08

Ta có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)

DO:

\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)

\(\Rightarrow DPCM\)

Tích t vs ku

lý canh hy
Xem chi tiết
alibaba nguyễn
4 tháng 10 2018 lúc 10:12

Dựa vào điều kiện xuy ra được trong 3 xô: \(\left(1-a\right);\left(1-b\right);\left(1-c\right)\)co 2 xô cùng dâu. Giả xư đo là \(\left(1-a\right);\left(1-b\right)\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\)

Ta lại co:

\(4=a^2+b^2+c^2+abc\ge c^2+2ab+abc\)

\(\Leftrightarrow ab\left(2+c\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Quay lại bài toan ta co:

\(ab+bc+ca-abc\le2+\text{​​}\left(bc+ca-abc-c\right)=2-c\left(1-a\right)\left(1-b\right)\le2\)

Hoàng Phúc
Xem chi tiết
alibaba nguyễn
27 tháng 12 2016 lúc 16:21

Thì mỗi người mỗi sở thích mà :)

huy naruto
26 tháng 12 2016 lúc 21:58

tại sao cậu cứ đăng câu hỏi tớ ghét cậu

alibaba nguyễn
26 tháng 12 2016 lúc 23:45

Ta có:

a = b + c

\(\Leftrightarrow a^4=b^4+4b^3c+6b^2c^2+4b^3c+c^4\)

Từ đây ta có

a4 + b4 + c4 = b4 + 4b3 c + 6b2 c2 + 4bc3 + c4 + b4 + c4

= 2[(b4 + 2b2 c+ c4) + 2(cb3 + bc3) + b2 c2]

= 2[(b2 + c2)2 + 2bc(b2 + c2) + b2 c2]

= 2(b2 + c2 + bc)2

\(\Rightarrow\)ĐPCM