Cho tam giác ABc vuông tại A đường cao AH vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N
a Chứng minh rằng tứ giác AMHN là hình chữ nhật
b Chứng minh rằng MN là tiếp tuyến chung của hai đường tròn
c Tìm điều kiện của tam giác ABC để M N có độ dài lớn nhất
a: Xét (I) có
ΔHMB nội tiếp
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét (K) có
ΔCNH nội tiếp
HC là đường kính
Do đó; ΔCNH vuông tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: góc IMN=góc IMH+góc NMH
=góc IHM+góc NAH
=góc HAC+góc HCA=90 độ
=>NM là tiếp tuyến của (I)
góc KNM=góc KNH+góc MNH
=góc KHN+góc MAH
=góc HBA+góc HAB=90 độ
=>MN là tiếp tuyến của (K)
Cho tam giác ABC vuông tại A, đường cao AH. a) Giải tam gaics ABC biết góc B = 36 và AC =6cm b)vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N. Chứng minh tứ giác AMHN là hình chữ nhật. Tính độ dài MN. c) CHứng minh MN là tiếp tuyến chung của đường tròn (I) và (K) d) Nêu điều kiện về tam giác ABC để MN có độ dài lớn nhất
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc IMN=góc IMH+góc NMH
=góc IHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (I)
góc KNM=góc KNH+góc MNH
=góc KHN+góc MAH
=góc BAH+góc HBA=90 độ
=>MN là tiếp tuyến của (K)
Cho tam giác ABC vuông tại A có đường cao AH . Đường tròn tâm Ở đường kính BH cắt cạnh AV ở M và đường tròn tâm I đường kính CH cắt cạnh AC ở N A) chứng minh tứ giác AMHN là hình chữ nhật B) cho biết rằng AB =6 , AC =8 . Tính độ dài đoạn MN
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)
=>AH=6*8/10=4,8
=>MN=4,8
cho tam giác ABC vuông tại A, đường cao AH.
a) Giải tam giác ABC biết \(\widehat{B}\)=600 và AC=8cm(làm tròn đến hàng đơn vị)
b) vẽ đường tròn tâm I đường kính BH cắt AB tại M, vẽ đường tròn tâm K đường kính CH cắt AC tại N. chứng minh tứ giác AMHN là hình chữ nhật. Tính MN.
c)chứng minh MN là tiếp tuyến chung của (I) và (K)
d) tìm điều kiện của tam giác ABC để MN lớn nhất
Cho tam giác ABC vuông tại A, có AH là đường cao. Đường tròn tâm E bán kính BH cắt cạnh AB ở M và đường tròn tâm I đường kính CH cắt cạnh AC ở N.
a, CM tứ giác AMHN là hình chữ nhật
b, Cho bt : AB=6 cm, AC= 8cm. Tính độ dài đoạn thẳng MN
c, CM rằng MN là tiếp tuyến của đường tròn tâm E
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
Giúp mình giải bài này với ạ.Mình đang cần gấp ạ
Cho tam giác ABC vuông tại A có ah là đường cao. Đường tròn tâm E đường kính BH cắt cạnh AB ở M và đường tròn tâm I đường kính CH cắt cạnh AC ở N
a, Chứng minh tứ giác AMHN hình chữ nhật
b, cho biết AB = 6 cm AC = 8 cm Tính độ dài đoạn thẳng MN
c, Chứng minh rằng MN là tiếp tuyến chung của hai đường tròn tâm E và đường tròn tâm I
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
góc INM=góc INH+góc MNH
=góc IHN+góc MAH
=góc BAH+góc HBA=90 độ
=>MN là tiếp tuyến của (I)
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (O) đường kính BH và đường tròn tâm O' đường kính CH, hai đường tròn này cắt AB, AC thứ tự tại E và F
a, Tứ giác AEHF là hình gì?
b, Chứng minh EF là tiếp tuyến chung của (O) và (O’)
c, Chứng minh đường tròn đường kính OO' tiếp xúc với EF
d, Cho đường tròn tâm I bán kính r tiếp xúc với EF, (O) và (O’). Tính r theo BH và CH?
a, HS tự làm
b, HS tự làm
c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này
d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N
Đặt BH=2R; CH= 2R’
∆IOM vuông tại M có:
I M 2 = I O 2 - O M 2 = R + r 2 - R - r 2 = 4 R r
Tương tự , ∆ION có I N 2 = 4 R ' r
Suy ra IM+IN=EF=AH
Vậy 2 R r + 2 R ' r = 2 R R '
=> r R + R ' = R R '
=> r = R R ' R + R ' 2
Cho tam ABC vuông tại A, có đường cao AH . Vẽ nửa đường tròn đường kính BH cắt AB tại M vẽ nửa đường tròn đường kính HC cắt AC tại N . Chứng minh 4 tứ giác AMHN là hình chữ nhật.
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
Cho tam ABC vuông tại A, có đường cao AH . Vẽ nửa đường tròn đường kính BH cắt AB tại M vẽ nửa đường tròn đường kính HC cắt AC tại N . Chứng minh 4 tứ giác AMHN là hình chữ nhật.
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật