Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 9:14

a: Xét (I) có

ΔHMB nội tiếp

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét (K) có

ΔCNH nội tiếp

HC là đường kính

Do đó; ΔCNH vuông tại N

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

b: góc IMN=góc IMH+góc NMH

=góc IHM+góc NAH

=góc HAC+góc HCA=90 độ

=>NM là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc HBA+góc HAB=90 độ

=>MN là tiếp tuyến của (K)

Đạt Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 23:41

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

c: góc IMN=góc IMH+góc NMH

=góc IHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc BAH+góc HBA=90 độ

=>MN là tiếp tuyến của (K)

Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 23:39

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)

=>AH=6*8/10=4,8

=>MN=4,8

Châu Đặng Phương Quỳnh
Xem chi tiết
Duyên Thảo
Xem chi tiết
Hoàng Thiện Nhân
18 tháng 12 2018 lúc 21:47

xem trên mạng nhé 

Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 23:39

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

 

c: góc EMN=góc EMH+góc NMH

=góc EHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (E)

mimi6a2005
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 23:40

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

c: góc EMN=góc EMH+góc NMH

=góc EHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (E)

góc INM=góc INH+góc MNH

=góc IHN+góc MAH

=góc BAH+góc HBA=90 độ

=>MN là tiếp tuyến của (I)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2019 lúc 7:04

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 23:36

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 13:51

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật