tìm GTLN của P= \(\frac{x-5}{\sqrt{x-2}-\sqrt{3}}\) help me, mk dg cần gấp nhé
Cho biểu thức: M=\(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)rút gọn M
b)tìm gtln của M
giúp mk vs nhé mk cần gấp
ĐK: x > 0
a) Rút gọn M
M = \(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
= \(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
= \(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)
=> M \(\le\)1/3
=> GTLN của M =1/ 3 khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\) thỏa mãn
Vậy max M = 1/3 tại x = 1
bn giải thíchcách làm câu b hôk mk vs mk ko hiểu
Giải thích lại nhé!
( Bạn có thể nói rõ là bạn không hiểu ở dòng nào?)
\(M=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
=> \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+1\)
mà \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\) ( theo cô - si )
=> \(\frac{1}{M}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)
=> \(M\le\frac{1}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy GTLN của M là 1/3 đạt tại x = 1
Tìm GTLN ,GTNN của hàm số sau :
\(y=\sqrt{3+x}+\sqrt{5-x}\)
Help me
Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)
ĐKXĐ: \(-3\le x\le5\)
\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)
\(\Rightarrow y\ge2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)
Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)
\(\Rightarrow y\le4\)
Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)
Vậy max y = 4 \(\Leftrightarrow x=1\)
Cho 2 biểu thức:
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\&P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}.\)
Tìm GTLN của biểu thức \(M=\frac{A}{P}.\)
Giúp mk giải nha m.n! mk đang cần gấp lắm! THANKS!!!
cho A=\(\frac{\sqrt{x}}{\sqrt{x}+3}\)+\(\frac{2\sqrt{x}}{\sqrt{x}-3}\)+\(\frac{3x+9}{x-9}\)
Tìm GTLN cuả A
(mọi người giúp em vs nhé, em đag cần gấp?
ĐK: \(x\ge0;x\ne9\)
\(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{3x+9}{x-9}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}-3\right)+3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}+2x-6\sqrt{x}+3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-9x+9}{x-9}\)
\(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
So sánh P với 1
Tính giá trị P khi \(x=6-2\sqrt{5}\)
Tìm GTLN của P ( câu này có thể bỏ )
Giúp mình với mình cần gấp nhé chiều
Xét P-1 = \(\frac{\sqrt{x}+3}{\sqrt{x}+2}-1\)
P-1 = \(\frac{\sqrt{x}+3-\sqrt{x}-2}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+2}\)
Nhận xét : \(\hept{\begin{cases}1>0\\\sqrt{x}+2>0\end{cases}}vớimoix\)
-> P-1 >0 với mọi x
-> P>1
Thay x=6-2 căn 5 vào P -> P=\(\frac{\sqrt{6-2\sqrt{5}}+3}{\sqrt{6-2\sqrt{5}+2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+3}\)
=\(\frac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\frac{\sqrt{5}+3}{\sqrt{5}+1}\)
\(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)( ĐKXĐ : \(x\ge0\))
1) Ta có : \(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)
Vì \(\frac{1}{\sqrt{x}+2}>0\left(\forall x\ge0\right)\)
Cộng 1 vào mỗi vế => \(1+\frac{1}{\sqrt{x}+2}>1\)
Vậy P > 1
2) Với \(x=6-2\sqrt{5}\)( tmđk )
Khi đó \(P=1+\frac{1}{\sqrt{6-2\sqrt{5}}+2}\)
\(P=1+\frac{1}{\sqrt{5-2\sqrt{5}+1}+2}\)
\(P=1+\frac{1}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)
\(P=1+\frac{1}{\left|\sqrt{5}-1\right|+2}\)
\(P=1+\frac{1}{\sqrt{5}-1+2}\)
\(P=1+\frac{1}{\sqrt{5}+1}\)
\(P=\frac{\sqrt{5}+1}{\sqrt{5}+1}+\frac{1}{\sqrt{5}+1}\)
\(P=\frac{\sqrt{5}+1+1}{\sqrt{5}+1}=\frac{\sqrt{5}+2}{\sqrt{5}+1}\)
B= \(\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}\) +\(\frac{\sqrt{x}+2}{1-\sqrt{x}}\) tifm GTLN cua B
giúp mk với, mk đang cần gấp nha
Bạn tự thu gọn thành 1+\(\frac{1}{\sqrt{x}+2}\) <= 1+\(\frac{1}{2}\)=\(\frac{3}{2}\) <=> x = 0
Tính
3) \(\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{2x-\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{3x\sqrt{x}-2x+\sqrt{x}-3}{x\sqrt{x}+1}\)
4) \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
5)\(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-5\sqrt{x}+6}\)
Help !!! Mk đang cần gấp ,thank các ben
a. Tìm GTNN của A = | x - 2011 | + | x - 200 |
b. Tìm GTLN của M = | x - 2/5 | + 2018
mn làm nhanh hộ mik vs_ mk cần nó gấp
help me !! help me!!
Cho P=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tìm GTNN
Lm nhanh giúp mk nhé!Mk đang cần gấp!