tìm các số tự nhiên n sao cho phân số \(\dfrac{n+3}{3n}\)có giá trị là số nguyên
Tìm các số tự nhiên n sao cho phân số n + 3 n có giá trị là số nguyên
A. { 1; 3}
B. { -1; -3}
C. { -3; 3}
D. { -3; -1; 1; 3}
Tìm các số tự nhiên n sao cho các phân số sau có giá trị là số nguyên
a. 2n+1/3n+2
b. 3n-2/n+1
c. 3-2n/3n+1
để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
\(< =>6n+3⋮3n+2\)(1)
Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự
Tìm tất cả các số nguyên n sao cho \(\dfrac{n+1}{3n-2}\)là phân số có giá trị là số nguyên
Bài 17: Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên.
a) \(\dfrac{12}{3n-1}\) . b) \(\dfrac{2n+3}{7}\) .
c) \(\dfrac{2n+5}{n-3}\) .
Mình mới học lớp 5 thôi nha
Mong bạn thông cảm
Cho phân số A=3n+3/3n-3.
a)Với giá trị nào của n thì A là phân số
b)tìm n để A có giá trị nguyên
c)tìm tất cả các số tự nhiên n để A là phân số tối giản
d)tìm n để A có GTLN.GTLN là bao nhiêu?
a,tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1 chia cho 4 dư 2 chia cho 5 dư 3 chia cho 6 dư 4 và chia hết cho 11 ?
b, Tìm các giá trị nguyên của n để phân số A=3n+2/n-1 có giá trị là số nguyên ?
Cho A = \(\dfrac{n+10}{2n-8}\) - tìm các số nguyên n để biểu thức A có giá trị là phân số .
- tìm các số tự nhiên n để biểu thức A có giá trị là một số nguyên .
Bài 3: Tìm số tự nhiên n để phân số \(\dfrac{6n+99}{3n+4}\)
a) có giá trị là số tự nhiên
b) là phân số tối giản
a: Để A là số tự nhiên thì
6n+8+91 chia hết cho 3n+4
mà n>=0
nên \(3n+4\in\left\{7;13;91\right\}\)
=>n=1 hoặc n=3
b: Để A là phân số tối giản thì 3n+4 ko là ước của 91
=>3n+4<>7k và 3n+4<>13a
=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)
cho phân số \(\dfrac{5}{3n-1}\) (n ∈ Z) tìm các giá trị của n để phân số đó có giá trị là một số nguyên
\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)
\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)