a) Chứng tỏ rằng: B=1/22+1/32+1/42+1/52+1/62+1/72+1/82 < 1
b) Tinh nhanh: A= 1+1/2 (1+2) +1/3 (1+2+3)+1/4(1+2+3+4)+......+1/16(1+2+3+...+16)
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
Chứng tỏ rằng: B=1/22+1/32+1/42+1/52+1/62+1/72+1/82<1
Đặt B=122+132+...+182B=122+132+...+182A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
=1−18<1(2)=1−18<1(2)
Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1
câu 1: so sánh A=2011+2012/2012+2013 va B =2011+2012/2012+2013
câu 2: tính giá trị của biểu thức sau: A=7/4.(3333/1212+3333/2020+3333/3030+3333/4242)
câu 3: B=(1-1/2).(1-1/3).(1-1/4) nhân......(1-1/20)
câu 4: chứng tỏ rằng: B=1/22+1/32+1/42+1/62+1/72+1/82<1
a) Chứng tỏ rằng: B=1/22+1/32+1/42+1/52+1/62+1/72+1/82 < 1
b) Tinh nhanh: A= 1+1/2 (1+2) +1/3 (1+2+3)+1/4(1+2+3+4)+......+1/16(1+2+3+...+16)
a) chứng tỏ rằng: B= 1/2^2+ 1/3^2 + 1/4^2 + 1/5^2 +1/6^2 + 1/7^2+ 1/8^2<1
b) A= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+3+.....+16)
Ai nhanh mk tick
A = 1/2^2 + 1/3^2 +.. + 1/8^2 < 1/1.2 + 1/2.3 +... + 1/7.8 = 1 - 1/2 + 1/2 -1/3 +... + 1/7 - 1/8
= 1 - 1/8 < 1
\(\Rightarrowđpcm\)
\(tíchnhaminhftchlaij\)
chứng tỏ rằng
b= 1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
b tính nhanh
A= 1+1/2(1+2) +1/3(1+2+3)+1/4(1+2+3+4)+...+ 1/16(1+2+3+...+16)
b)Ta có:\(A=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{16.\left(1+2+3+...+16\right)}\)
\(=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)
\(=1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\)
\(=1+1,5+2+...+8,5\)
\(=\frac{\left(8,5+1\right).\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<\)
B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
B=\(1-\frac{1}{8}=\frac{8}{8}-\frac{7}{8}=\frac{1}{8}<2\)
Vậy 1/8<2 hay 1/8<16/8
Bài 1 : Chứng tỏ rằng ;
a) A = 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
b) B = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 < 1/2
Chú ý : dấu / là phân cách giữa tử số và mẫu số
Bài 1 : Chứng tỏ rằng ;
a) A = 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
b) B = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 < 1/2
Chú ý : dấu / là phân cách giữa tử số và mẫu số
Chưng tỏ
a, S= 1/2^2+1/3^2+...+1/9^2
Chứng tỏ 2/5<S<8/9
b, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
c, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16