Cho `x,y>0` thỏa mãn `x^2 +y^2 < x+y`
Tìm max `P=x+3y`
cho x,y thuộc R Thỏa mãn x^2.y^2 +2y+1=0 , tìm max, min p=xy / 3y+1
Cho x,y thỏa mãn 3x2+y2+2xy+4=7x+3y. Tìm Min, Max của P=x+y
Ta có 3x2+y2+2xy+4=7x+3y
<=> (x2 + 2xy + y2 ) - 3(x + y) + 2(x2 - 2x +1) + 2 = 0
<=> P2 - 3P + 9/4 + 2(x - 1)2 - 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2 - 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
chúc cậu hok tốt @_@
Bài 1: Tìm cặp số nguyên (x;y) tm 2xy2 +2x+3y2=4
Bài 2: Cho các số x,y thỏa mãn x>=0;y>=0 và x+y=1
Tìm Max và Min của A=x2+y2
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
tìm min,max: B=x+y với x,y là các số thực thỏa mãn pt 3x^2+y^2+2xy-7x-3y+4
cho các số x,y thỏa mãn x>0;y>0 và x+y=1. tìm max và min của phương trình A=x^2+y^2
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
cho các số x,y thỏa mãn x>0;y>0 và x+y=1. tìm max và min của phương trình A=x^2+y^2
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
Bài 1. Cho x,y thỏa mãn 3x2+y2+2xy+4=7x+3y
Tìm Min, Max của P=x+y
1. Cho x >= 0;y >= 0 và x+y=1. Tìm Min, Max của A=x^2+y^2
2. Cho 2 số thực x,y thỏa mãn x^2+y^2 <= x+y. CMR x+y <= 2
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
cho x,y,z >0 thỏa mãn x^2023+y^2023+z^2023=3. tìm max M=x^2+y^2+z^2
- Với \(0< x;y< 1\)
\(x^2>x^{2003}\left(1\right)\)
\(y^2>y^{2003}\left(2\right)\)
\(z^2>z^{2003}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow M=x^2+y^2+z^2>x^{2003}+y^{2003}+z^{2003}=3\)
\(\Rightarrow\) Không có giá trị max của M.
- Với \(x;y\ge1\)
\(x^2\le x^{2003}\left(1\right)\)
\(y^2\le y^{2003}\left(2\right)\)
\(z^2\le z^{2003}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow x^2+y^2+z^2\le x^{2003}+y^{2003}+z^{2003}=3\)
\(\Rightarrow Max\left(M\right)=3\left(x=y=z=1\right)\)