tìm n \(\varepsilon\)N
để \(\frac{n}{n+1}\) +\(\frac{2}{n+1}\) là số tự nhiên
Cho phân số \(A=\frac{2n+8}{n+1}\)(n \(\varepsilon\)N) . Tìm các số tự nhiên n để A là số nguyên tố.
Bài 1:Tìm các số tự nhiên m và n thỏa mãn:\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Bài 2:Cho phân số A =\(\frac{6.n-1}{3.n+2}\)( n là số tự nhiên)
a)Tìm n để giá trị của A là số tự nhiên
b)Tìm n để A có giá trị nhỏ nhất
Các bạn giải ra hộ mính nhé!
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Bài 1: Tìm số tự nhiên n đẻ phân số \(\frac{n-1}{n+2}\)là một số nguyên
Bài 2: Tìm số tự nhiên a để ba phân số \(\frac{21}{a}\) ; \(\frac{22}{a-1}\); \(\frac{24}{a+1}\) đều là các số tự nhiên
Bài 1:
ĐKXĐ:\(n\ne-2\)
Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)
Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)
=> \(n+2=\left\{-3;-1;1;3\right\}\)
=> \(n=\left\{-5;-3;-1;1\right\}\)
Mà \(n\in N\)=> n=1
Bài 2:
ĐKXĐ \(a\ne1;-1\)
Để \(\frac{21}{a}\in N\)
Thì \(a\inƯ\left(21\right)\)
=>a={1;3;7;21} (1)
Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)
=>a-1={1;2;11;22}
=>a={1;3;12;23} (2)
Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)
=> a+1={1;2;4;6;12;24}
=>a={0;1;3;5;11;23} (3)
Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên
Để \(\frac{n-1}{n+2}\in Z\) thì n - 1 chia hết cho n + 2
<=> n + 2 - 3 chia hết cho n + 2
<=> 3 chia hết cho n + 2
<=> n + 2 thuộc Ư(3) = {1;3}
Ta có bảng :
n + 2 | 3 | 1 |
n | 1 | -1 (loại) |
Bài 1:Cho A =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{2016^2}\)
Chứng tỏ rằng A ko phải là một số tự nhiên.
Bài 2:Tìm giá trị của n\(\varepsilon\)N
Để a =\(\frac{2n^2+1}{n^2-1}\)nhận giá trị nguyên
CÁC BN GIÚP MIK NHA
Bài 2:
Ta có: \(a=\frac{2n^2+1}{n^2-1}=\frac{2\left(n^2-1\right)+3}{n^2-1}=2+\frac{3}{n^2-1}\)
Để a nhận giá trị nguyên thì \(\left(n^2-1\right)\inƯ\left(3\right)\)={1;-1;3;-3}
Ta có bảng sau:
n^2-1 | 1 | -1 | 3 | -3 |
n^2 | 2 | 0 | 4 | -2 |
n | / | 0 | 2 | / |
Vì n là số tự nhiên nên n \(\in\){0;2}
tìm số tự nhiên n để \(\frac{n^2+7}{n+7}\) là số tự nhiên
bài 2: tìm số tự nhiên n để \(\frac{n^2+8}{n+8}\) là số tự nhiên
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
Tìm số tự nhiên n để \(\frac{12}{2.n+1}\)là số tự nhiên.
\(\frac{12}{2n+1}\in N\)
\(\Leftrightarrow12⋮2n+1\)
\(\Rightarrow2n+1\in\text{Ư}\left(12\right)=\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
\(\Rightarrow n\in\left\{0;-1;\frac{1}{2};-\frac{3}{2};1;-2;\frac{3}{2};-\frac{5}{2};\frac{5}{2};-\frac{7}{2};\frac{11}{2};-\frac{13}{2}\right\}\)
Mà :
\(n\in N\Rightarrow n=1\)
2n + 1 thuộc Ư(12) là \([-12;-6;-4;-3;-2;-1;1;2;3;4;6]\)
2n thuộc\(\orbr{-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}\)\(]\)
n thuộc \([-\frac{13}{2};............;\frac{11}{2}\)\(]\)
nói chung chia 2
Tìm số tự nhiên n để hai phân số đều là các số tự nhiên:\(\frac{n+6}{15}\)và \(\frac{3n-2}{n+1}\)
Để \(\frac{n+6}{15}\) là số tự nhiên <=> n + 6 ⋮ 15 => n + 6 = 15k => n = 15k - 6 ( k thuộc N ) (1)
Ta có : \(\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}=3-\frac{5}{n+1}\)
Để \(3-\frac{5}{n+1}\)là số tự nhiên <=> \(\frac{5}{n+1}\)là số tự nhiên
=> n + 1 là ước của 5 => Ư(5) = { - 5; - 1; 1; 5 }
=> n + 1 = { - 5; - 1; 1; 5 }
=> n = { - 6; - 2; 0; 4 }
Mà theo (1) , n phải có dạng 15k - 6 => n = - 6
Mà theo đề bài n là số tự nhiên nên n không tồn tại
tìm số tự nhiên n,m sao cho :
a.\(\frac{n+4}{n+2}\)cũng là số tự nhiên
b.\(\frac{1}{n\times m}=\frac{1}{m}-\frac{1}{n}\)
c.\(\frac{1}{n}+\frac{1}{m}=\frac{1}{6}\)
d.2\(2\times n+3\times n=12\)
tìm số nguyên nđể phân số sau có giá trị nguyên:
C = \(\frac{n^2+2n-4}{n+1}\)
ai đúng và nhanh nhất mk tk cho nhad!
Để C nguyên thì
\(n^2+2n-4⋮n+1\)
\(\Rightarrow n\left[n+1\right]+n-4⋮n+1\)
\(\Rightarrow n-4⋮n+1\)
\(\Rightarrow\left[n+1\right]-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
=> n + 1 \(\in U\left[5\right]\in\left\{-5;-1;1;5\right\}\)
=> \(n\in\left\{-6;-2;0;4\right\}\)
\(C=\frac{n^2+2n+1-5}{n+1}=\frac{\left(n+1\right)^2-5}{n+1}=\left(n+1\right)-\frac{5}{n+1}\)
để C nguyên thì phân số \(\frac{5}{n+1}\)nguyên \(\Leftrightarrow\hept{\begin{cases}5⋮\left(n+1\right)\\n+1\le5\end{cases}\Leftrightarrow\hept{\begin{cases}5⋮\left(n+1\right)\\n\le4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}}\end{cases}\Leftrightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n=0\\n=4\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)
bị lỗi đăng thiếu :
\(\Leftrightarrow\hept{\begin{cases}n\le4\\\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)