Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc tri
Xem chi tiết
le bao truc
26 tháng 6 2017 lúc 20:40

Gọi UCLN của 10n+9 và 15n+14 là d
Ta có
\(10n+9⋮d;15n+15⋮d\)
\(\Rightarrow2\left(15n+14\right)-3\left(10n+9\right)=\left(30n+28\right)-\left(30n+27\right)=1⋮d\)
Vậy d=1 nên 10n+9 và 15n+14 nguyên tố cùng nhau
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản

NGUYỄN VĂN MINH ĐỨC
Xem chi tiết
Dương No Pro
26 tháng 3 2021 lúc 15:37

có j thắc mắc ib mk nhé

Khách vãng lai đã xóa
Dương No Pro
26 tháng 3 2021 lúc 15:37

Gọi d là ƯCLN của 10n + 1 và 15n + 2 ( d \(\in\)N* ) 

\(\Rightarrow\hept{\begin{cases}10n+1⋮d\\15n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+1\right)⋮d\\2\left(15n+2\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}30n+3⋮d\\30n+4⋮d\end{cases}\Rightarrow\left(30n+4\right)-\left(30n+3\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{10n+1}{15n+2}\)là p/s tối giải.

Khách vãng lai đã xóa
Nguyễn Trung Kiên
Xem chi tiết
Lê Tài Bảo Châu
23 tháng 7 2019 lúc 8:12

Đặt \(\left(10n+9;15n+14\right)=d\)

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)

\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N

Jennie Kim
23 tháng 7 2019 lúc 8:15

gọi d là ƯC(10n + 9; 15n + 14) 

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)

\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)

\(\Rightarrow30n+28-30n-27⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên

Xyz OLM
23 tháng 7 2019 lúc 8:15

Gọi ƯCLN(10n + 9 ; 15n + 14) = d

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}\)

\(\Rightarrow\left(30n+28\right)-\left(30+27\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với \(\forall n\inℕ\)(đpcm)

Nguyễn Hữu Giang
Xem chi tiết
Nguyễn Huy Tú
27 tháng 3 2021 lúc 16:32

Gọi ƯCLN ( 4n + 3 ; 10n + 7 ) = d \(\left(d\inℕ^∗\right)\)

Ta có : \(4n+3⋮d\Rightarrow20n+15⋮d\)(1) 

\(10n+7⋮d\Rightarrow20n+14⋮d\)(2)

Lấy (1) - (2) ta được : \(20n+15-20n-14⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Phạm Thành Đông
27 tháng 3 2021 lúc 16:26

Gọi \(ƯCLN\left(4n+3;10n+7\right)=d\left(d\inℕ^∗\right)\)

Ta có:

\(\hept{\begin{cases}4n+3⋮d\\10n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\2\left(10n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}20n+15⋮d\\20n+14⋮d\end{cases}}\)

\(\Rightarrow\left(20n+15\right)-\left(20n+14\right)⋮d\)

\(\Rightarrow20n+15-20n-14⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)(vì \(d\inℕ^∗\))

Do đó \(ƯCLN\left(4n+3;10n+7\right)=1\)

\(\Rightarrow\frac{4n+3}{10n+7}\)là phân số tối giản với mọi số tự nhiên n (điều phải chứng minh).

Tổng quát :  \(\frac{a}{b}\)là phân số tối giản \(\LeftrightarrowƯCLN\left(a;b\right)=1\)(tức là 2 số a và b nguyên tố cùng nhau).

Khách vãng lai đã xóa

Gọi d=ƯCLN(4n+3;10n+7)

\(\Rightarrow\)4n+3\(⋮\)d và 10n+7\(⋮\)d

\(\Rightarrow\)(4n+3).5\(⋮\)d và (10n+7).2\(⋮\)d

hay 20n+15\(⋮\)d và 20n+14\(⋮\)d

\(\Rightarrow\)\([\)(20n+15)-(20n+14)\(]\)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)1=d

Vậy \(\frac{4n+3}{10n+7}\)là phân số tối giản.

Khách vãng lai đã xóa
Nguyễn Trường Hải
Xem chi tiết
lalisa manoban
26 tháng 6 2020 lúc 7:45

Gọi d là UCLN (10n+1,15n+2)

\(\Leftrightarrow10n+1⋮d;15n+2⋮d\)

\(\Leftrightarrow3\left(10n+1\right)⋮d;2\left(15n+2\right)⋮d\)

\(\Leftrightarrow30n+3⋮d;30n+4⋮d\)

\(\Leftrightarrow\left(30n+4\right)-\left(30n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{10n+1}{15n+2}\) là phân số tối giản

\(\RightarrowĐFCM\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 6 2020 lúc 7:29

Với n nguyên : 

( 10n + 1 ; 15 n + 2 ) = ( 10n + 1; ( 15n +  2 ) - ( 10 n + 1) ) = ( 10n + 1; 5n + 1 ) = ( 5n + 1 ; 5n ) = ( 5n ; 1 ) = 1 

=> 10n + 1 và 15n + 2 là 2 số nguyên tố cùng nhau với n nguyên 

=> 10n + 1/ 15n + 2 là phân số tối giản. 

Khách vãng lai đã xóa
nàng tiên xinh đẹp
Xem chi tiết
nghiem thi huyen trang
11 tháng 3 2017 lúc 18:30

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

NGUYỄN MINH THÁI
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 6 2020 lúc 9:31

Chứng minh\(\frac{10n+1}{15n+2}\)là phân số tối giản 

Gọi d = ƯCLN(10n + 1 ; 15n + 2 )

\(\Rightarrow\hept{\begin{cases}10n+1⋮d\\15n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+1\right)⋮d\\2\left(15n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+3⋮d\\30n+4⋮d\end{cases}}}\)

=> ( 30n + 4 ) - ( 30n + 3 ) chia hết cho d

=> 30n + 4 - 30n - 3 chia hết cho d

=> 1 chia hết cho d 

=> d = 1

=> ƯCLN(10n + 1 ; 15n + 2) = 1

=> \(\frac{10n+1}{15n+2}\)là phân số tối giản ( đpcm )

Khách vãng lai đã xóa
Lê Minh Phú
Xem chi tiết

Gọi d=ƯCLN(3n+1;4n+1)

\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d

\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d

hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d

\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)1=d

Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.

Phần còn lại làm tương tự nha bạn.

Khách vãng lai đã xóa
bảo ngọc
Xem chi tiết
Ngô Tấn Đạt
13 tháng 10 2017 lúc 21:28

Tiếp theo bài giải của bạn Nguyễn Thanh Hằng

\(2n+1⋮d\\ \Rightarrow5n\left(2n+1\right)⋮d\\ \Rightarrow10n^2+5n⋮d\Rightarrow\left(10n^2+9n+4\right)-\left(10n^2+5n\right)⋮d\\ \Rightarrow4n+4⋮d\Rightarrow4.\left(n+1\right)⋮d\\ \Rightarrow n+1⋮d\)

Vì d lẻ do 2n+1 chia hết cho d

\(\Rightarrow2n+2⋮d\\ \Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\\ \Rightarrow1⋮\left(đpcm\right)\)

Nguyễn Thanh Hằng
12 tháng 10 2017 lúc 15:33

Gọi \(d=ƯCLN\left(10n^2+9n+4;20n^2+20n+9\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}10n^2+9n+4⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20n^2+18n+8⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+1⋮d\)

đên đây thì bí