Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TrầnHoàngGiang
Xem chi tiết
Lê Song Phương
16 tháng 9 2023 lúc 21:00

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

TrầnHoàngGiang
Xem chi tiết
Akai Haruma
16 tháng 9 2023 lúc 23:21

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

Lê Thành An
Xem chi tiết
shitbo
1 tháng 2 2021 lúc 13:52

\(d=\left(2n+1,\frac{n^2+n}{2}\right)=\left(2n+1,n^2+n\right)\text{vì }2n+1\text{ lẻ}\)

\(\Rightarrow2n^2+2n-2n^2-n\text{ chia hết cho d hay:}n\text{ chia hết cho d do đó: }2n+1-2n\text{ chia hết cho d }nên:\)

1 chia hết cho d nên: d=1.

ta có điều phải chứng minh.

Khách vãng lai đã xóa
hải pham
Xem chi tiết
Nguyễn Thị Thương Hoài
18 tháng 12 2023 lúc 13:05

Gọi ước chung lớn nhất của a và b là d ta có:

\(\left\{{}\begin{matrix}n+1⋮d\\4n^2+8n+5⋮d\end{matrix}\right.\)

⇒ (4n 2 + 4n) + (4n + 4) + 1 ⋮ d

   ⇒4n(n + 1) + 4(n + 1) + 1 ⋮ d

⇒ (n +1).(4n + 4) + 1 ⋮ d

⇒ 1 ⋮ d ⇒ d = 1 

⇒(a;b) = 1 hay a; b là hai số nguyên tố cùng nhau (đpcm)

Citii?
18 tháng 12 2023 lúc 13:11

\(325+376\\ \)

Nguyễn Thị Nga
Xem chi tiết
Nguyễn Thị Nga
7 tháng 12 2018 lúc 20:14

Mình đang cần gấp

Ngọc_Hà
7 tháng 12 2018 lúc 20:38

gọi ƯCLN(4n+1;n+1) =d

Ta có:\(\hept{\begin{cases}4n+1⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+1⋮d\\4\left(n+1\right)⋮d\end{cases}}\)

\(\Rightarrow4\left(n+1\right)-4n-1⋮d\)

\(\Rightarrow3⋮d\)\(\Rightarrow d\in\left\{1;3\right\}\)

VÌ 4n+1 và n+1 khác tính chẵn lẻ

=> d=1

Vậy 4n+1 và n+1 là 2 số nguyên tố cùng nhau vs mọi STN n (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 18:02

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

Dream
25 tháng 12 2021 lúc 10:30

Thank you

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 13:15

Trần Hà Lan
31 tháng 10 2024 lúc 20:57

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

Trịnh Như Quỳnh
Xem chi tiết
Potter Harry
19 tháng 12 2015 lúc 19:51

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

Ngô Phúc Dương
19 tháng 12 2015 lúc 19:48

làm ơn làm phước cho mk 3 tick đi mk mà

please

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.