Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị ngọc linh
Xem chi tiết
Hideyoshi Nagachika
31 tháng 5 2019 lúc 23:09

bạn chỉ mình câu a với

Ngô Bảo Linh
Xem chi tiết
Ngô Bảo Linh
Xem chi tiết
Quang Huy Nguyễn Phan
Xem chi tiết
hìnhthiên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Huỳnh Cẩm Hân
17 tháng 6 2017 lúc 10:14

search : https://hoc24.vn/hoi-dap/question/56467.html

Gallavich
Xem chi tiết
Akai Haruma
29 tháng 3 2021 lúc 23:13

1. 

Câu 1:

a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$

Tương tự: $BD\parallel CH$

Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành

b) 

Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

Ta có:

$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$

$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$

$\Rightarrow BO=CO(1)$ 

$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$

Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)

$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$

Mặt khác:

$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$

Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.

$\Rightarrow OK=\frac{AH}{2}=3$ (cm)

 

Akai Haruma
29 tháng 3 2021 lúc 23:13

Hình câu 1:

undefined

Akai Haruma
29 tháng 3 2021 lúc 23:23

Hai bài toán khác nhau thì bạn đặt bài toán 1 là câu 1, bài toán 2 là câu 2 cho dễ phân biệt.

Câu 2:

Gọi $AB=c; BC=a; CA=b$. Áp dụng tính chất đường phân giác thì:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{c}{a}$

$\Rightarrow \frac{b}{CD}=\frac{AC}{CD}=\frac{AD+CD}{CD}=\frac{c+a}{a}$

$\Rightarrow CD=\frac{ab}{a+c}$

Hoàn toàn tương tự:

$BE=\frac{ca}{a+b}$

Xét tam giác $CDB$ có phân giác $CI$. Áp dụng tính chất đường phân giác:

$\frac{ID}{BI}=\frac{CD}{BC}=\frac{ab}{a(a+c)}=\frac{b}{a+c}$

$\Rightarrow \frac{BD}{BI}=\frac{a+b+c}{a+c}$

Tương tự với tam giác $BEC$ phân giác $BI$ thì: $\frac{CE}{CI}=\frac{a+b+c}{a+b}$

Thay vô điều kiện $BD.CE=2BI.CI$ thì:

$\frac{BD}{BI}.\frac{CE}{CI}=2$

$\Leftrightarrow \frac{(a+b+c)^2}{(a+c)(a+b)}=2$

$\Leftrightarrow a^2=b^2+c^2$ nên theo Pitago đảo thì $ABC$ là tam giác vuông tại $A$ 

$\Rightarrow \widehat{BAC}=90^0$

 

Phong Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2017 lúc 3:43

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.