Cho \(a^3-4a^2b=2b^3-5ab^2\)
Tính \(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
cho a^3-4a^2b=2b^3-5ab^2 gia tri bieu thuc P=5a^2-4b^2+2ab/6a^2+2b^2-3ab
a3-4a2b=2b3-5ab2
=>(a3-3a2b+3ab2-b3)-(a2b+b3-2ab2)=0
=>(a-b)3-b(a2-2ab+b2)=0
=>(a-b)2(a-2b)=0
=> a-2b=0 (vì a#b#0 bạn thiếu điều kiện nha)
=>a=2b. Thay a=2b vào bt P ta đc P=1
cho\(a^3-4a^2b=2b^3-5ab^2\) giá trị của biểu thức P=\(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
Cho \(a^3-4a^2b=2b^3-5ab^2,a\ne b\ne0\) .Tính \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\) .
1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)
từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1
Cho a3 - 4a2b = 4b3 - 5ab2. Tính P = \(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
a3-4a2b-4b3+5ab2=0
==>(a-b)3 - b (a-b)2 =0
==>a-b = b ==> a=2b
thay a=2b vào biểu thức ta đc kết quả bằng 1
Cho a3+4a2b=2b3-5ab2 và a khác b khác 0.
Giá trị \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab^2}=?\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
Cho: a^3 - 4a^2b = 2b^3 - 5ab^2 và a khác b
Tính P = (5a^2 - 4b^2 + 2ab)/(6a^2 + 2b^2 - 2ab)
Cho mình hỏi các hằng đẳng thức này có tên là gì vậy:
a, (a+b+c)^3 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
b, (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
c, (a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5
a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) Hệ thức bình phương tổng ba số
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số
Tìm x:
\(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\)
\(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\Leftrightarrow x=\frac{a^2b-4b^3}{3ab^2}:\frac{a^2-2ab}{a^2b}\Leftrightarrow x=\frac{b\left(a^2-4b^2\right)}{3ab^2}:\frac{a\left(a-2b\right)}{a^2b}\)
\(\Leftrightarrow x=\frac{\left(a-2b\right)\left(a+2b\right)}{3ab}.\frac{ab}{a-2b}\Leftrightarrow x=\frac{a+2b}{3}\)
Vậy \(x=\frac{a+2b}{3}\)
Có : \(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\)
\(\Leftrightarrow x=\frac{a^2b-4b^2}{3ab^2}.\frac{a^2b}{a^2-2ab}\)
\(\Leftrightarrow x=\frac{a\left(a^2b-4b^2\right)}{3b\left(a^2-2ab\right)}=\frac{a^3b-4ab^2}{3a^{ }b-6ab^2}\)
Chứng minh các hằng đẳng thức
x^4=a^4 +4a^3+6a^2b^2+4ab^3+b^4
x^5=a^5+5a^4+10a^3b^2+10a^2b^3+5ab^4+b^4
a) Sửa đề :
\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)
\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)
\(x^4=\left(a+b\right)^4\)
b) Sửa đề:
\(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)
\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)
\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)
\(x^5=\left(a+b\right)^5\)
Bạn có thể tự tóm tắt lại