GIẢI PT SAU :
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x-2}}}\)=\(\frac{6}{3x-1}\)
1.Giải pt sau:(\(\sqrt{2}\) +2)(x\(\sqrt{2}\) -1)=2x\(\sqrt{2}\) -\(\sqrt{2}\)
2.Cho pt: 2(a-1).x-a(x-1)=2a+3
3.Giải pt sau:
a) \(\frac{2}{x+\frac{\text{1}}{\text{1}+\frac{x+\text{1}}{x-2}}}=\frac{6}{3x-\text{1}}\)
b) \(\frac{\frac{x+\text{1}}{x-\text{1}}-\frac{x-\text{1}}{x+\text{1}}}{\text{1}+\frac{x+\text{1}}{x-\text{1}}}=\frac{x-\text{1}}{2\left(x+\text{1}\right)}\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Mấy bài kia sao cái phương trình dài thê,s giải sao nổi
giải pt sau: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^2-1}\)
giải pt \(\frac{x^2+x+1}{x^2+2x+1}+\frac{x^2+3x+1}{x^2+4x+1}=\frac{5}{6}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
giải các pt sau
\(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
\(\frac{2\left(3x+1\right)+1}{4}-5=\frac{2\left(3x-1\right)}{5}-\frac{3x+2}{10}\)
\(\frac{3\left(x-3\right)}{4}+\frac{4x-10.5}{10}=\frac{3\left(x+1\right)}{5}+6\)
\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)
mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được
\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0
<=> x + 59 = 0
<=> x=-59
1, giải pt sau
a,\(\frac{9}{x}+2=-6\)
b,\(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
c,\(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}\)
a) ĐKXĐ: x≠0
Ta có: \(\frac{9}{x}+2=-6\)
⇔\(\frac{9}{x}+2+6=0\)
⇔\(\frac{9}{x}+8=0\)
⇔\(\frac{9}{x}+\frac{8x}{x}=0\)
⇔9+8x=0
⇔8x=-9
hay \(x=-\frac{9}{8}\)
Vậy: \(x=-\frac{9}{8}\)
b) ĐKXĐ: x≠0;x≠-1;x≠-3
Ta có: \(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
⇔\(\frac{7}{x+1}+\frac{-18x}{x\left(x+1\right)\left(x+3\right)}-\frac{-4}{x+3}=0\)
⇔\(\frac{7x\left(x+3\right)}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}+\frac{-18x}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}-\frac{-4x\left(x+1\right)}{\left(x+3\right)\cdot x\cdot\left(x+1\right)}=0\)
⇔\(7x^2+21x-18x+4x\left(x+1\right)=0\)
\(\Leftrightarrow7x^2+21x-18x+4x^2+4x=0\)
⇔\(11x^2+7x=0\)
\(\Leftrightarrow x\left(11x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\11x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\11x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\frac{-7}{11}\end{matrix}\right.\)
Vậy: \(x=\frac{-7}{11}\)
c) ĐKXĐ: x≠1; x≠-3
Ta có: \(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2-2x+3}\)
⇔\(\frac{3x-1}{x-1}-1-\frac{2x+5}{x+3}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\left(3x-1\right)\left(x+3\right)-\left(x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-4=0\)
\(\Leftrightarrow3x^2+9x-x-3-\left(x^2+3x-x-3\right)-\left(2x^2-2x+5x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-\left(x^2+2x-3\right)-\left(2x^2+3x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-x^2-2x+3-2x^2-3x+5-4=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(x=\frac{-1}{3}\)
giải pt sau:
\(\frac{x-1}{2x^2-3x-2}-\frac{x}{2x^2+7x+3}=\frac{4}{x^2+x-6}\)
giải pt
a) \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-3}=12\left(\frac{x-2}{x-3}\right)^2\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+7x+6}=6\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
Giải PT:
\(\frac{4x}{x-2}-\frac{1}{x-1}=\frac{8x^2-7}{3x-6}\)
ĐKXĐ: \(x\ne2;x\ne1\)
Ta có: \(\frac{4x}{x-2}-\frac{1}{x-1}=\frac{8x^2-7}{3x-6}\)
\(\Leftrightarrow\frac{4x}{x-2}-\frac{1}{x-1}-\frac{8x^2-7}{3x-6}=0\)
\(\Leftrightarrow\frac{4x\left(x-1\right)\cdot3}{\left(x-2\right)\left(x-1\right)\cdot3}-\frac{1\left(x-2\right)\cdot3}{\left(x-1\right)\left(x-2\right)\cdot3}-\frac{\left(8x^2-7\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)}=0\)
\(\Leftrightarrow12x\left(x-1\right)-3\left(x-2\right)-\left(8x^2-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow12x^2-12x-\left(3x-6\right)-\left(8x^3-8x^2-7x+7\right)=0\)
\(\Leftrightarrow12x^2-12x-3x+6-8x^3+8x^2+7x-7=0\)
\(\Leftrightarrow-8x^3+20x^2-8x-1=0\)
Giải PT:
\(\frac{4x}{x-2}-\frac{1}{x-1}=\frac{8x^2-7}{3x-6}\)
\(\frac{12x\left(x-1\right)-3x+6}{3\left(x-2\right)\left(x-1\right)}=\frac{\left(8x^2-7\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)}\)
tiếp theo nhân vào và khử mẫu nha bạn!
mong mn giải ra kq lun xem