rút gọn phân thức sau
a) 4x^3y^2z/8x^5y^4z^3
b) 10xy^2(x+y)/15xy(x+y)^3
giúp em với
Rút gọn: M = \(\frac{5x^5+4x^4+3x^3+2}{4x^4+3x^3+2x^2+z}+\frac{4y^4+3y^3+2y^2+y}{5y^5+4y^4+3y^3+2}+\frac{5y^5+4z^4+3z^3+2}{4z^4+3z^3+2z^2+z}\)
Phâp thức đa thức thành nhân tử
a, x^2y^3-1/2x^4y^8
b, a^2b^4+a^3b-abc
c, 7x(y-4)^2-(y-4)^3
d, -x^2y^2z-6x^3y-8x^4z^2-x^2.y^2.z^2
e, x^3-4x^2+x
giúp mình rút gọn phân thức
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
\(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
\(=\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)\left(x+y\right)^2}\)
\(=\frac{10y}{15\left(x+y\right)^2}\)
\(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\frac{\left(x^2-x\right)-\left(xy-y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)
\(=\frac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)
\(=\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)
\(=\frac{x-y}{x+y}\)
a)\(\frac{2xy}{3\left(x+y\right)^2}\)
b)=\(\frac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)
=\(\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)=\(\frac{\left(x-y\right)}{\left(x+y\right)}\)
câu a của công chúa xinh xắn còn thiếu nha
Phân tích các đa thức sau thành nhân tử
a) \(a^2b^4+a^3b-abc\)
b) \(-x^2y^2z-6x^3y-8x^4z^2-9^5y^5z^5\)
1. Rút gọn biểu thức x(x-y)-y(x+y)+x^2+y^2
2. Phân tích đa thức thành nhân tử :
a) a^3-a^2x-ay^2+xy^2
b) 5x^2-4x+10xy
c) 12x-9--4x^2
d) 8x^3+12x^2y+6xy^2+y^3
e) 5x^2-4x+10xy-8y
3. Điền vào chỗ trống :
a) (1/2x-y)^2=1/4x^2-.....+y^2
cho các số dương x,y,z tỉ lệ với 3,4,5. Tính giá trị của biểu thức
\(P=\dfrac{x+2y+3z}{2z+3y+4z}+\dfrac{2z+3y+4z}{3x+4y+5z}+\dfrac{3x+4y+5z}{4x+5y+6z}\)
Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào P
=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)
=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)
=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)
lộn đề .
Thay 2z + 3y + 4z = 2x+ 3y + 4z nha
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
phân tích các đa thức sau thành nhân tử
a) \(a^2b^4+a^3b-abc\)
b) \(-x^2y^2z-6x^3y-8x^4z^2-9x^5y^5z^5\)
Rút gọn phân thức:
\(\frac{x^2+2x+1}{5x^3+5x^2}\) \(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
Ta có
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)= \(\frac{2y}{3\left(x+y\right)^2}\)
\(\frac{x^2+2x+1}{5x^3+5x^2}=\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}=\frac{x+1}{5x^2}\)
Rút gọn phân thức
\(\frac{5x^2+10xy+5y^2}{3x^3+3y^3}\)
\(\frac{-15x\left(x-y\right)}{3\left(y-x\right)}\)
\(\frac{5x^2+10xy+5y^2}{3x^3+3y^3}=\frac{5\left(x^2+2xy+y^2\right)}{3\left(x^3+y^3\right)}=\frac{5\left(x+y\right)^2}{3\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{5\left(x+y\right)}{3\left(x^2-xy+y^2\right)}\)
\(\frac{-15x\left(x-y\right)}{3\left(y-x\right)}=\frac{15x\left(y-x\right)}{3\left(y-x\right)}=\frac{15x}{3}\)