Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2023 lúc 17:57

1: y=(m+5)x+2m-10

=>(m+5)x-y+2m-10=0

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m+5\right)+0\cdot\left(-1\right)+2m-10\right|}{\sqrt{\left(m+5\right)^2+\left(-1\right)^2}}=\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}=1\)

=>\(\sqrt{\left(m+5\right)^2+1}=\left|2m-10\right|=\sqrt{4m^2-40m+100}\)

=>\(4m^2-40m+100=m^2+10m+26\)

=>\(3m^2-50m+74=0\)

=>\(m=\dfrac{25\pm\sqrt{403}}{3}\)

2: Gọi A,B lần lượt là tọa độ giao điểm của (d) với trục Ox,Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x+2m-10=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x=-2m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-2m+10}{m+5}\end{matrix}\right.\)

=>\(OA=\left|\dfrac{-2m+10}{m+5}\right|=\left|\dfrac{2m-10}{m+5}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+5\right)x+2m-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=0\cdot\left(m+5\right)+2m-10=2m-10\end{matrix}\right.\)

=>OB=|2m-10|

ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left|2m-10\right|}{\left|m+5\right|}\cdot\left|2m-10\right|\)

\(=\dfrac{\left|\left(m-5\right)\left(2m-10\right)\right|}{\left|m+5\right|}=\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|\)

\(S=3\) khi \(\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|=3\)

=>\(\left[{}\begin{matrix}\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=3\\\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-10m-10m+50=3m+15\\2m^2-20m+50=-3m-15\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-20m+50-3m-15=0\\2m^2-20m+50+3m+15=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-23m+35=0\\2m^2-17m+65=0\end{matrix}\right.\)

=>\(m\in\left\{\dfrac{23\pm\sqrt{249}}{4}\right\}\)

Bảo Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2023 lúc 0:47

a: Thay x=0 và y=3 vào (d1), ta đc:

2m+1=3

=>2m=2

=>m=1

(d1): y=3

=>giao của (d1) với (d) nằm trên trục hoành

b: \(h\left(O;d1\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{\left|2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}\)

Để h lớn nhất thì m=1

Marry
Xem chi tiết
Laura
24 tháng 1 2020 lúc 16:10

P/s: Bài này thì không có chắc tại cũng mới học qua

\(a)\) Hàm số trên nghịch biến

\(\Leftrightarrow3m-1< 0\)

\(\Leftrightarrow3m< 1\)

\(\Leftrightarrow m< \frac{1}{3}\)

Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến

\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)

\(\Leftrightarrow m-2=0\)

\(\Leftrightarrow m=2\)

\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths

Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)

\(\Leftrightarrow-3m+1+m-2=1\)

\(\Leftrightarrow-2m-1=1\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)

\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)

Ta có: \(y=2.1-1\)

\(\Leftrightarrow y=2-1=1\)

\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)

Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)

Ta có: \(\left(3m-1\right)1+m-2=1\)

\(\Leftrightarrow3m-1+m-2=1\)

\(\Leftrightarrow4m-3=1\)

\(\Leftrightarrow m=1\)

Vậy \(m=1\)

\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)

\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)

\(\Leftrightarrow3m-1\ne-2\)

\(\Leftrightarrow3m\ne3\)

\(\Leftrightarrow m\ne1\)

Vậy \(m\ne1\)

\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)

\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung

\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)

Vậy không tìm được giá trị \(x\)nào TMĐK

Khách vãng lai đã xóa
Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Thị Ngọc Trinh
7 tháng 11 2017 lúc 12:15

Bài 3 làm sao v ạ?

Mai Quỳnh Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2019 lúc 12:06

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 10 2018 lúc 9:44

Đáp án D

Chọn D.

sunny
Xem chi tiết
Phan Thị Hồng Ánh
Xem chi tiết
Không Tên
6 tháng 1 2019 lúc 22:47

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

Không Tên
6 tháng 1 2019 lúc 22:54

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

Không Tên
6 tháng 1 2019 lúc 23:04

Giả sử (d) luôn đi qua điểm cố định M(x0; y0)

Ta có:  \(y_0=\left(m+5\right)x_0+2m-10\)

<=>  \(mx_0+5x_0+2m-10-y_0=0\)

<=>  \(m\left(x_o+2\right)+5x_0-y_0-10=0\)

Để M cố định thì:  \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\)   <=>   \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)

Vậy...

jihun
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 20:00

Sửa: \(\left(d\right):y=\left(m-2\right)x+m+1\)

PT giao (d) với Ox \(y=0\Leftrightarrow x\left(m-2\right)=-m-1\Leftrightarrow x=\dfrac{m+1}{2-m}\Leftrightarrow A\left(\dfrac{m+1}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+1}{2-m}\right|\)

PT giao (d) với Oy \(x=0\Leftrightarrow y=m+1\Leftrightarrow B\left(0;m+1\right)\Leftrightarrow OB=\left|m+1\right|\)

Áp dụng HTL: \(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\sqrt{2}\right)^2}=\dfrac{1}{2}\)

\(\Leftrightarrow\left|\dfrac{2-m}{m+1}\right|^2+\dfrac{1}{\left|m+1\right|^2}=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(2-m\right)^2}{\left(m+1\right)^2}+\dfrac{1}{\left(m+1\right)^2}=\dfrac{1}{2}\\ \Leftrightarrow2\left(2-m\right)^2+2=\left(m+1\right)^2\\ \Leftrightarrow8-8m+2m^2+2=m^2+2m+1\\ \Leftrightarrow m^2-10m+9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\) thỏa mãn đề bài