Cho đường thẳng d: y = (m − 1)x + m và d′: y = m 2 − 1)x + 6. Tìm m để đường thẳng d cắt trục tung tại A, d′ cắt trục hoành tại B sao cho tam giác OAB cân tại O
A. m = ± 4
B. m = ± 2
C. m = ± 3
D. m = ± 1
Đường thẳng d: y = (m − 3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là:
A. 1
B. 0
C. 3
D. 2
Trong mặt phẳng với hệ tọa độ Oxy, cho A(3;1), B(-1;2). Cho điểm M di động trên đường thẳng d: y=x. Đường thẳng MA cắt trục hoành tại P và đường thẳng MB cắt trục tung tại Q. Chứng minh đường thẳng PQ luôn đi qua một điểm cố định
Cho đường thẳng (d): y = x - 1 và parabol (P): y = x² + (2m + 1) - 3m² - 1 . Tim m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho tam giác OAB có diện tích bằng 6
Cho đường thẳng d đi qua A(1;-2) và cắt hai trục tọa độ lần lượt tại M và N sao cho tam giác OMN cân. Phương trình đường thẳng d là:
A. x - y - 3 = 0
B. x + y + 1 = 0
C. x - y + 3 = 0
D. x - y - 1 = 0
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Cho hàm số y = 2(m−1)x – m 2 – 3 (d). Tìm tất cả các giá trị của m để (d) cắt trục hoành tại một điểm có hoành độ x 0 thỏa mãn x 0 < 2.
A. m < -1
B. m > 2
C. m > 1
D. m < 1
Tìm giá trị thực của m để hai đường thẳng d: y = mx − 3 và △ : y + x = m cắt nhau tại một điểm nằm trên trục tung.
A. m = -3
B. m = 3
C. m = ± 3
D. m = 0
Trong mặt phẳng Oxy, cho điểm M(2;1). Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A, B khác O) sao cho tam giác OAB có diện tích bằng 10. Phương trình đường thẳng d là: