Câu 7: Cho hàm số y = ax + 3 có đồ thị là đường thẳng (d) qua điểm
A(-2;1). a) Tìm hệ số góc của (d)
b) Viết phương trinh đđường thẳng (di qua B(0;2) và song song với (d
trong mặt phẳng tọa độ Oxy cho điểm B(-1;2) gọi đồ thị của hàm số y=2x-7 là đường thẳng (d) tìm a và b biết đồ thị hàm số y=ax+b đi qua điểm B và song song với đường thẳng (d)
vì dths y=ax+b // với dt (d) => a=2
mà đths y=ax+b đi qua điểm B =>2=2.(-1)+b =>b=4
vì dths y=ax+b // với dt (d) => a=2
mà đths y=ax+b đi qua điểm B =>2=2.(-1)+b =>b=4
câu 9 cho 2 đường thẳng d y= -x+m+2 và d1 y=(m bình -2)x+3 tìm m d và d1 song song
câu 10 cho hai đường thẳng d bằng y trừ 3x công 2 và d phẩy y bằng ax+b tìm a và b d phẩy đi qua A(âm 1,2)và song song d
câu 11 tìm m để đồ thị hàm số y=2x-1 và y=-x+m cắt nhau tại 1 điểm có hoành độ =2
câu 12 tìm m để đường thẳng y=2x-5 và đường thẳng y =(m-2)x+m-2 cắt nhâu tại 1 điểm trên trục tung
câu 13 viết pt đường thẳng d đi qua điêm M( âm 2 ,0) và cắt tung độ =3
câu 14 xác định hàm số y =ax+b biết đồ thị hàm số song song với đường thẳng y= 1 phần 2 x +5vaf cắt trục tung tại điểm có hoành độ bằng -3
câu 15 xác định hàm số y=ã+b biết đồ thị hàm số song song với đường thẳng y=1 phần 2 x +5 cắt trục hoành tại điểm có hoành độ bằng 3
Bài 2: Cho hàm số y = - x + 3 có đồ thị (d) a) Vẽ (d) b) Tính góc tạo bởi đường thẳng y = - x + 3 với trục hoành c) Xác định hàm số y = ax+b biết đồ thị của nó song song với đường thẳng (d) và qua điểm (4;2)
Bài 3: Cho tam giác ABC nội tiếp đường tròn (O;R) đường kính BC. Gọi H là trung điểm của AC. Tia OH cắt đường tròn (O) tại điểm M. Từ A vẽ tia tiếp tuyến Ax với đường tròn (O) cắt tia OM tại N a/ Chứng minh : OM // AB b/ Chứng minh: CN là tiếp tuyến của đường tròn (O) c) Giả sử góc B có số đo bằng 600 . Tính diện tích của tam giác ANC.
Bài 2:
c: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=4 và y=2 vào (d'), ta được:
b-4=2
hay b=6
Cho a là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau:
1. Hàm số y= l o g a x có tập xác định là D= ( 0 ; + ∞ ) .
2. Hàm số y= l o g a x là hàm đơn điệu trên khoảng ( 0 ; + ∞ ) .
3. Đồ thị hàm số y= l o g a x và đồ thị hàm số y = a x đối xứng nhau qua đường thẳng y= x.
4. Đồ thị hàm số y= l o g a x nhận Ox là một tiệm cận
A. 4
B. 1
C. 3
D. 2
Đáp án là C.
• Các ý sau đây là đúng: 1;2;3
Bài 2: Cho hàm số y=2x-6 có đồ thị là đường thẳng (d)
a) Vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy
b) Xác định các hệ số a, b của hàm số y=ax+b biết rằng đồ thị (d') của hàm số này song song với (d) và đi qua điểm I (1; 4)
giải chi tiết cụ thể giúp mk vớiiiiiiiiii ạh
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=1 và y=4 vào (d'), ta được:
b+2=4
hay b=2
Cho hàm số y = ax ( a khác 0 ) có đồ thị là đường thẳng d.
a) Xác định quan hệ số a biết d đi qua A( 2; -4)
b) Vẽ đồ thị hàm số khi a = -4
( câu b khỏi làm cũng đc nhé! ~^-^~)
______________~_Help me_~__________________
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) có đường tiệm cận đứng đi qua điểm M (3;-1)
b) đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
c) biết đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có tiệm cận đứng là x = 2 và tiệm cận ngang y = 3. Tính 2a+3b
d) đồ thị hàm số \(y=\dfrac{x+2}{x^2+2x+m^2-3m}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)
=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)
Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)
=>-1,5m=3
=>m=-2
b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)
=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2
=>m=2
c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)
=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)
=>2/b=2
=>b=1
=>\(y=\dfrac{ax+1}{x-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)
=>a=3
Câu 3: Hàm số bậc nhất y = 2x – 1 có hệ số a bằng
A. 2 B. -2 C. 1 D. -1
Câu 4: Hàm số bậc nhất y = -5x + 7 có hệ số b bằng
A. -5 B. 7 C. 5 D. -7
Câu 8: Đồ thị của hàm số y= 2x + 3 là đường thẳng đi qua hai điểm phân biệt sau
A. (0;3) và (3;0) . B. (0;3) và (1,5;2).
C. (0;3) và (1;5) . D. (3;0) và (1,5;0) .
Câu 9: Đường thẳng y = - x + 5 cắt trục hoành tại điểm nào?
A. (5;0) . B. (1;0) . C. (5;0) . D. (1;4) .
Câu 10: Đường thẳng y = 3x + b đi qua điểm (-2; 2) thì hệ số b của nó bằng
A. 8. B. -8 . C. 4. D. -4
Câu 3: A
Câu 4: B
Câu 8: C
Câu 9: A; C
Câu 10: A
Câu 3: A
Câu 4: B
Câu 8: C
Câu 9: A; C
Câu 10: A
Bài 3: Xác định hàm số y = ax + b biết:
a) a=3 và đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 2
b) Đồ thị hàm số song song với đường thẳng y = -x + 6 và đường thẳng đi qua điểm (-1; -9)
c) Có nhận xét gì về góc tạo bởi 2 đường thẳng trên với trục Ox
a: a=3 nên y=3x+b
Thay x=2 và y=0 vào y=3x+b, ta được:
\(3\cdot2+b=0\)
=>b+6=0
=>b=-6
vậy: y=3x-6
b: Vì (d): y=ax+b//y=-x+6 nên \(\left\{{}\begin{matrix}a=-1\\b\ne6\end{matrix}\right.\)
vậy: (d): y=-x+b
Thay x=-1 và y=-9 vào (d), ta được:
\(b-\left(-1\right)=-9\)
=>b+1=-9
=>b=-10
Vậy: (d): y=-x-10
c: (d1): y=3x-6 có a=3>0
nên góc tạo bởi đường thẳng này với trục Ox là góc nhọn
Vì (d2): y=-x-10 có a=-1<0
nên góc tạo bởi đường thẳng này với trục Ox là góc tù
Cho đường thẳng (d); y=ax+b(a≠0) a.tìm a,b biết rằng đường thẳng đi qua 2 điểm A(1;2) và B(2;0) b.vẽ đồ thị hàm số y=ax+b với a,b vừa tìm được ở câu a
a) Vì (d) đi qua A(1;2) và B(2;0) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=2\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2-a=2-\left(-2\right)=4\end{matrix}\right.\)
Vậy: (d): y=-2x+4