Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
qqqqqqq
Xem chi tiết
Nguyễn Minh Quang
4 tháng 5 2021 lúc 21:40

thực hiện quy đồng ta có :

\(\frac{9}{xy}-\frac{1}{y}=2+\frac{3}{x}\Leftrightarrow9-x=2xy+3y\)

\(\Leftrightarrow4xy+2x+6y+3=21\)

Do x,y nguyên dương nên ta có 

\(\Leftrightarrow\left(2x+1\right)\left(2x+3\right)=21\Leftrightarrow\hept{\begin{cases}2x+1=3\\2y+3=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Khách vãng lai đã xóa
Trọng Messi
Xem chi tiết
Cuong Dang
Xem chi tiết
Nguyễn thành Đạt
Xem chi tiết
Lê Khánh Huyền
Xem chi tiết
Nguyễn Linh Chi
4 tháng 12 2019 lúc 0:58

Trả lời:

Khách vãng lai đã xóa
Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2023 lúc 16:19

\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)

\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)

\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)

Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)

\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau

Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP

\(\Rightarrow4y^2+6y-3=k^2\)

\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)

\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)

Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn

Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)

Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)

Linhhhhhh
Xem chi tiết
Lương Khánh Nhật Minh
Xem chi tiết
Nguyễn Diễm Cửu Hoa
Xem chi tiết