Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jetsuku Kayato
Xem chi tiết

Bài 1:

a: \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\)

\(=\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\)

\(=\frac13-\frac{1}{99}=\frac{32}{99}\)

b: \(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\cdots+\frac{1}{97\cdot99}\)

\(=\frac12\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\right)\)

\(=\frac12\left(\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac12\left(\frac13-\frac{1}{99}\right)=\frac12\cdot\frac{32}{99}=\frac{16}{99}\)

c: \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\cdots+\frac{1}{990}\)

\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+\cdots+\frac{1}{30\cdot33}\)

\(=\frac13\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\cdots+\frac{3}{30\cdot33}\right)\)

\(=\frac13\left(\frac13-\frac16+\frac16-\frac19+\cdots+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac13\left(\frac13-\frac{1}{33}\right)=\frac13\cdot\frac{10}{33}=\frac{10}{99}\)

Bài 2:

Sửa đề: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac{7}{12}\)

Đặt \(A=\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}\)

Ta có: \(\frac{1}{41}>\frac{1}{60}\)

\(\frac{1}{42}>\frac{1}{60}\)

...

\(\frac{1}{59}>\frac{1}{60}\)

\(\frac{1}{60}=\frac{1}{60}\)

DO đó: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\cdots+\frac{1}{60}+\frac{1}{60}=\frac{20}{60}=\frac13\) (1)

Ta có: \(\frac{1}{61}>\frac{1}{80}\)

\(\frac{1}{62}>\frac{1}{80}\)

...

\(\frac{1}{79}>\frac{1}{80}\)

\(\frac{1}{80}=\frac{1}{80}\)

Do đó: \(\frac{1}{61}+\frac{1}{62}+\cdots+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+\cdots+\frac{1}{80}=\frac{20}{80}=\frac14\) (2)

Từ (1),(2) suy ra \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac13+\frac14\)

=>\(A>\frac13+\frac14\)

=>A>7/12

Lê Thảo
Xem chi tiết
Nguyễn Vũ Minh Hiếu
11 tháng 5 2019 lúc 19:25

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

Hoàng Ái Phương
11 tháng 5 2019 lúc 19:33

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

khang minh
20 tháng 9 2021 lúc 15:08

Tui hk bít nữa

Khách vãng lai đã xóa
Trương Tiến Anh
Xem chi tiết
Tú Nguyễn
24 tháng 4 2016 lúc 14:55

Ta có S=2/3+2/3.5+2/5.7+2/7.9+...+2/97.99 
           =2/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
           =2/3+1/3+(1/5-1/5)+(1/7-1/7)+...+(1/97-1/97)+1/99
           =1+0+0+0+...+0+1/99
           =1+1/99
           =100/99
Mà 100/99>1.Suy ra S>1
   Vậy S>1
            

Nguyên Lê
24 tháng 4 2016 lúc 15:27

S=1-1/3 + 1/3 - 1/5 + ... + 1/97 - 1/99

=1 - 1/99 => S<1

Nguyễn Thị Phương Thúy
Xem chi tiết
Xyz OLM
21 tháng 5 2021 lúc 10:03

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

Khách vãng lai đã xóa
midoriya izuku
21 tháng 5 2021 lúc 10:10

các bạn có  về sweet home

Khách vãng lai đã xóa
Xem chi tiết
Nguyễn Gia Huy
19 tháng 2 2020 lúc 21:28

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)\(=\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{99-97}{97\cdot99}\)\(=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}+...+\frac{99}{97\cdot99}-\frac{97}{97\cdot99}\)\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)\(=\frac{1}{3}-\frac{1}{99}\)\(=\frac{32}{99}>\frac{8}{25}\)

Khách vãng lai đã xóa
★Čүċℓøρş★
19 tháng 2 2020 lúc 21:31

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

Nhận thấy : \(\frac{32}{99}>\frac{8}{25}\left(32>8;99>25\right)\)

Khách vãng lai đã xóa
gái ma kết
Xem chi tiết
Kudo Shinichi
3 tháng 4 2017 lúc 11:16

a.  

\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)

\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

b.

\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)

\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)

mk đầu tiên nha bạn

Dương Thị Chung
Xem chi tiết
Intelligent Girl
29 tháng 3 2015 lúc 21:34

 vipboyss5: \(\frac{32}{99}\)chứ ko phải 33

Võ Thúy Nghĩa
12 tháng 4 2016 lúc 20:20

1/3.5+1/5.7+1/7.9+...+1/97.99

=1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99

=1/3-1/99

=33/99-1/99

=32/99

Trần Nhật Anh
Xem chi tiết
kaitovskudo
19 tháng 3 2015 lúc 22:01

M=(1/3-1/5)+(1/5+1/7)+...+(1/97+1/99)

M=1/3+(1/5-1/5)+...+(1/97-1/97)-1/99

M=1/3-1/99

M=32/99

Nguyễn Thế Duy Goku
23 tháng 3 2016 lúc 20:41

\(\frac{32}{99}\)

lê ngọc ánh
Xem chi tiết
Thầy Hùng Olm
26 tháng 2 2023 lúc 12:22

\(S=\dfrac{2^2}{3x5}+\dfrac{2^2}{5x7}+\dfrac{2^2}{7x9}+...+\dfrac{2^2}{97x99}\)

\(\dfrac{S}{2}=\dfrac{2}{3x5}+\dfrac{2}{5x7}+\dfrac{2}{7x9}+...+\dfrac{2}{97x99}\)

\(\dfrac{S}{2}=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)

S=\(\dfrac{64}{99}\)