Bài 1: So sánh
A. n+1/n+2 và n+3/n+4
B. n/n+3 và n-1/n+4
Bài 1:Tìm 5 phân số tối giản giữa 1/5 và 3/8
Bài 2 : so sánh a,232323/242424 và 20132013/20142014
b, n+1/n+2 và n+3/n+4
c, n/n+3 và n-1/n+4
cho m > n hãy so sánh
a/2n+3 và 2m+3
b/-n-5 và -m-5
`a)`
`m > n`
`<=>2m > 2n`
`<=>2m+3 > 2n+3`
Vậy `2n+3 < 2m+3`
_________________________
`b)`
`m > n`
`<=>-m < -n`
`<=>-m-5 < -n-5`
Vậy `-n-5 > -m-5`
a)\(m>n\Rightarrow2m>2n\Rightarrow2m+3>2n+2\)
b)\(m>n\Rightarrow-m< -n\Rightarrow-m-5< -n-5\)
So sánh các phân số sau
a)n+1/n+2 và n+3/n+4
b)n/n+3 và n-1/n+4
c)n+1/n va n+3/n+2
d)n/n+6 và n+1/n+7
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nên \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Bài 1: cho A = 999......9 (n chữ số 9). So sánh tổng các chữ số của A và tổng các chữ số của A^2.
Bài 2: Tìm n thuộc Z để n^2+9n+7 chia hết cho n+2.
Bài 3: Tìm các ước chung của 12n+1 và 30n+2.
Bài 4: So sánh A và 1/4 biết:
A= 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3.
Bài 5: So sánh 1/40 và B=1/5^3 + 1/6^3 + ... + 1/2004^3.
Bài 6: Tìm x, y biết:
x/2 = y/5 và 2x-y=3
Bài 7: Tìm x, y biết:
x/2=y/5 và x . y = 10
So sánh : a)n/n+1 và n+1/n+2 b) n/n+3 và n-1/n+4 c) n/2n+1 và 3n+1/6n+3
cho tớ l i k e trước nhé rồi tớ sẽ trả lời
Ta có: \(\frac{n}{n+1}=\frac{n\times n+2}{n+1\times n+2}\)
\(\frac{n+1}{n+2}=\frac{n+1\times n+1}{n+2\times n+1}=\frac{n\times2}{n\times3}\)
=> n + 1/ n + 2 > n/n+1
a, n/n+1 va n+1/n+2
Có n/n+1 + 1/n+1=1
n+1/n+2 + 1/n+2 = 1
Vì 1/n+1>1/n+2 nên n/n+1<n/n+2 ( Bài này so sanh theo phần bù đơn vị)
c, n/2n+1 va 3n+1/6n+3
Có n/2n+1 = 3n/3.(2n+1) = 3n/6n+3
Vì 3n/6n+3 < 3n+1/6n+3 nên n/2n+1<3n+1/6n+3
So sánh bt N là số tự nhiên:
\(\dfrac{n+3}{n+4}\)và,\(\dfrac{n+1}{n+2}\) \(\dfrac{n-1}{n+4}\) và \(\dfrac{n}{n+3}\)
Lời giải:
$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$
$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$
Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$
Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$
Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$
-------------------------
$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$
$<1-\frac{n+3}=\frac{n}{n+3}$
Bài 1:
a. (n+4)⋮(n-1)
b. (n\(^2\)+2n-3)⋮(n+1)
c. (3n-1)⋮(n-2)
d. (3n+1)⋮(2n-1)
Bài 2:
Cho A = 7+7\(^2\)+7\(^3\)+....+7\(^{36}\)
a) A là số chẵn hay lẻ?
b) Chứng minh rằng: A⋮3: A⋮8 và A⋮19
c) Tìm chữ số tận cùng của A
Bài 3.So sánh:
a) 2\(^{248}\) và 3\(^{155}\)
b) 202\(^{303}\) và 303\(^{202}\)
c) 222\(^{777}\) và 777\(^{222}\)
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
Bài 1 c: 3n - 1 \(⋮\) n - 2
3n - 6 + 5 \(⋮\) n - 2
3.( n - 2) + 5 ⋮ n - 2
5 ⋮ n - 2
n - 2 \(\in\) Ư(5) = {- 5; -1; 1; 5}
n \(\in\) {-3; 1; 3; 7}
So sánh các phân số :
a,n/n+1 và n+2/n+3 (n thuộc N)
b,n/n+3 và n-1/n+4(n thuộc N*)
c,n/2n+1 và 3n+1/6n+3(n thuộc N)
a, < b, > c, không biết
em mới hoc lớp 4 thôi
so sánh n/n+1 và n+2/n+3
n/n+3 và n-1/n+4