TÍNH GTLN : 15-\(\sqrt{x^2-4x+13}\)
Tìm GTLN,GTNN:
B=15-\(\sqrt{x^2-4x+13}\)
1)Tìm GTNN :
\(A = { 5+ \sqrt{x^2 - 3x +9}}\)
2)Tìm GTLN :
\(x = {15- \sqrt{x^2-4x+13}}\)
Tìm GTLN
P=\(|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}|\)
Ta có
\(P^2=2x^2+2x+18-2\sqrt{\left(x^2-4x+5\right)\left(x^2+6x+13\right)}\)
Xét \(P^2\le26\)
=> \(\sqrt{\left(x^2-4x+5\right)\left(x^2+6x+13\right)}\ge x^2+x-4\)
<=> \(\left(x^2-4x+5\right)\left(x^2+6x+13\right)\ge\left(x^2+x-4\right)^2\)
<=> \(x^2-14x+49\ge0\)
<=> \(\left(x-7\right)^2\ge0\)( luôn đúng)
=> \(P\le\sqrt{26}\)'
Vậy \(MaxP=\sqrt{26}\)khi x=7
tìm GTLN của \(A=\left|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}\right|\)
Lời giải:
Ta có:
\(A^2=(\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13})^2=2x^2+2x+18-2\sqrt{(x^2-4x+5)(x^2+6x+13)}(*)\)
Áp dụng BĐT Bunhiacopxky:
\((x^2-4x+5)(x^2+6x+13)=[(x-2)^2+1^2][(x+3)^2+2^2]\)
\(\geq [(x-2)(x+3)+1.2]^2=(x^2+x-4)^2\)
\(\Rightarrow \sqrt{(x^2-4x+5)(x^2+6x+13)}\geq |x^2+x-4|\geq x^2+x-4(**)\)
Từ \((*); (**)\Rightarrow A^2\leq 2x^2+2x+18-2(x^2+x-4)\)
\(\Leftrightarrow A^2\leq 26\Rightarrow A\leq \sqrt{26}\)
Vậy $A_{\max}=\sqrt{26}$. Dấu "=" xảy ra khi $x=7$
Tìm GTLN của biểu thức :
\(P=\left|\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13}\right|\)
Không chắc lắm nha! Phần BĐT phụ mình có đc là nhờ sách nâng cao nên ms làm đc thôi!
Ta c/m BĐT phụ: \(\left|\sqrt{f^2+g^2}-\sqrt{h^2+k^2}\right|\le\sqrt{\left(f-h\right)^2+\left(g-k\right)^2}\) với f - h;g-k là hằng số. (1)
Bình phương hai vế,ta có: \(BĐT\Leftrightarrow f^2+g^2+h^2+k^2-2\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\le f^2+h^2-2fh+g^2+k^2-2gk\)
\(\Leftrightarrow fh+gh\le\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\) (2)
Nếu fh + gh < 0 thì (2) đúng
Nếu fh + gh >= 0 thì \(\left(2\right)\Leftrightarrow f^2h^2+g^2k^2+2fhgi\le f^2h^2+f^2k^2+g^2h^2+g^2k^2\)
\(\Leftrightarrow\left(fk-gh\right)^2\ge0\)(đúng)
Dấu "=" xảy ra fk = gh và fh + gk >= 0 (trích chứng minh BĐT ở sách 9 chuyên đề đại số THCS_ Vũ Hữu Bình)
Quay lại bài toán,ta có: \(P=\left|\sqrt{\left(x-2\right)^2+1^2}-\sqrt{\left(x+3\right)^2+2^2}\right|\)
\(\le\sqrt{\left(-5\right)^2+\left(1-2\right)^2}=\sqrt{25+1}=\sqrt{26}\)
Dấu "=" xảy ra khi 2(x-2) = 1(x+3) và (x-2)(x+3) + 1(x+3) >=0
Tức là x = 7 (t/m)
tìm gtln của violympic
\(\frac{3}{\sqrt{x^2+4x+13}}\)
Tính GTLN và GTNN của P = \(\sqrt{2018-4x}+2\sqrt{x-504}\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
y= -x^2 + 4x + \(\sqrt{x^2-4x+3}\) tìm gtln,nn