Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fan RUNNING MAN
Xem chi tiết
Phạm Minh Cường
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 12 2023 lúc 13:38

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

Chu Bá Đạt
Xem chi tiết
alibaba nguyễn
31 tháng 3 2017 lúc 18:46

Ta có:

\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)

\(=\frac{ab}{\sqrt{1-a-b+ab}}+\frac{bc}{\sqrt{1-b-c+bc}}+\frac{ca}{\sqrt{1-a-c+ca}}\)

\(=\frac{ab}{\sqrt{\left(1-a\right)\left(1-b\right)}}+\frac{bc}{\sqrt{\left(1-b\right)\left(1-c\right)}}+\frac{ca}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)

\(\le\frac{a^2}{2\left(1-a\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{a^2}{2\left(1-a\right)}\)

\(=-\left(\frac{a^2}{a-1}+\frac{b^2}{b-1}+\frac{c^2}{c-1}\right)\)

\(\le-\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{1}{3-1}=\frac{1}{2}\)

Vậy GTLN là  \(P=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)

Thắng Nguyễn
31 tháng 3 2017 lúc 21:45

Biến đổi một chút, ta có:\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}\)

\(=\sqrt{\frac{bc}{a+bc}}\cdot\sqrt{\frac{bc}{c+a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)

Tương tự cho 2 BĐT còn lại ta có: 

\(\frac{ca}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right);\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{a+b}\right)\)

Cộng ba bất đẳng thức trên lại theo vế, ta có:

\(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
 

kudo shinichi
1 tháng 4 2017 lúc 18:10

ai bít

ho huu duong
Xem chi tiết
Ngô Minh Đức
Xem chi tiết
Nông Hồng Hạnh
Xem chi tiết
Lương Thị Ngọc Anh
Xem chi tiết
TFBOYS_VTK
27 tháng 8 2016 lúc 15:33

kb nhé

Lương Thị Ngọc Anh
27 tháng 8 2016 lúc 16:05

Làm ơn giúp đi mà

đấng ys
Xem chi tiết
missing you =
8 tháng 1 2022 lúc 17:02

\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{1-a-b-ab}}=\sqrt{\dfrac{ab}{\left(1-b\right)\left(1-a\right)}}\le\dfrac{\dfrac{a}{1-b}+\dfrac{b}{1-a}}{2}\left(1\right)\) \(tương-tự\Rightarrow\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{\dfrac{b}{1-c}+\dfrac{c}{1-b}}{2}\left(2\right)\)

\(\Rightarrow\sqrt{\dfrac{ca}{b+ ca}}\le\dfrac{\dfrac{c}{1-a}+\dfrac{a}{1-c}}{2}\left(3\right)\)

\( \left(1\right)\left(2\right)\left(3\right)\Rightarrow A\le\dfrac{\dfrac{a}{1-b}+\dfrac{b}{1-a}+\dfrac{b}{1-c}+\dfrac{c}{1-b}+\dfrac{c}{1-a}+\dfrac{a}{1-c}}{2}=\dfrac{\dfrac{a+c}{1-b}+\dfrac{b+c}{1-a}+\dfrac{b+a}{1-c}}{2}=\dfrac{\dfrac{1-b}{1-b}+\dfrac{1-a}{1-a}+\dfrac{1-c}{1-c}}{2}=\dfrac{3}{2}\)

\(\Rightarrow A_{max}=\dfrac{3}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

đấng ys
8 tháng 1 2022 lúc 10:59

à e nhầm tìm giá trị lớn nhất ạ

Pham Duong
Xem chi tiết