Cho 4 số a,b,c,d khác 0 thỏa mãn b2=ac và c2=bd
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
Biết \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a},\)với a,b,c là các số thực khác 0.
Tính giá trị của biểu thức M= \(\dfrac{a^{2019}+b^{2019}+c^{2019}}{a^{672}b^{673}c^{674}}\).
a) Tìm x biết: (3x-1)6=(3x-1)4
b. Cho a,b,c là các số khác 0 sao cho \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\). Tính giá trị của biểu thức: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho \(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}\)và a+2b+c≠0. Tính giá trị của biểu thức M=\(\dfrac{a^3.c^2.b^{2015}}{b^{2020}}\)
Cho 2a=3b=4c và a,b,c khác 0. Tìm giá trị biểu thức của A=\(\dfrac{a+b-c}{a+2b-2c}\)
Từ tỉ lệ thức a/b=c/d (a,b,c,d khác 0;a khác \(\pm b\);c\(\ne\)\(\pm d\)) hãy suy ra các tỉ lệ thức sau:
a,\(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\)
b,\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
c,\(\dfrac{a+b}{a}\) = \(\dfrac{c+d}{c}\)
d,\(\dfrac{a-b}{a}\) =\(\dfrac{c-d}{c}\)
e,\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}\) =\(\dfrac{a+c-b}{b}\)=\(\dfrac{b+c-a}{a}\)
Tính P= \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
cho a, b ,c là 3 số thực khác 0 , thỏa mãn điều kiện : \(\dfrac{a+b-c}{c}=\dfrac{b+ c -a}{a}=\dfrac{c+a-b}{b}\) .
Tính giá trị biểu thức P = \( (1+ \dfrac{b}{a} )\) \( (1+ \dfrac{a}{c} )\) \((1+\dfrac{c}{b} )\)
Cho a, b, c là các số hữu tỉ khác 0, sao cho:
\(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\)
Tính giá trị bằng số của 1 biểu thức:
M=\(\dfrac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}\)