Tính tổng: S=1.2+2.3+3.4+...+99.100
tinh tong S=1.2+2.3+3.4+...............+99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
= 99.100.101
=> S = 99.100.101 / 3
=> S = 333300
Tinh tong S=1.2+2.3+3.4+4.5+...+99.100
ta có \(3S=1\cdot2\cdot3+2\cdot3\cdot3+.....+99\cdot100\cdot3\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)....+99\cdot100\cdot\left(101-98\right)\)
\(3S=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-......-98\cdot99\cdot100+99\cdot100\cdot101\)
\(3S=99.100.101\)
\(S=\frac{99\cdot100\cdot101}{3}\)
S=...
3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3S=99.100.101
S=33.100.101
S=333300
Vậy S=333300
( 99,1 - 1,2 ) : 1,1 + 1 = 90
S là :
( 99,1 + 1,2 ) x 90 : 2 = 4513,5
tinh tong
1.2+2.3+3.4+.......+99.100
Đặt M = 1 . 2 + 2 . 3 + ... + 99 . 100
3M = 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 3 + ... + 99 . 100 . 3
3M = 1 . 2 . ( 3 - 0 ) + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) ... . 99 . 100 . ( 101 - 98 )
3M = ( 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 +... + 99 . 100 . 101 ) - ( 0 . 1 . 2 + 1 . 2 . 3 + 2 . 3 . 4 +.......+ 98 . 99 . 100 )
3M = 99 . 100 . 101 - 0 . 1 . 2
3M = 999900 - 0 = 999900
M = 999900 : 3
M = 333300
ban oi giai cach khac cach nay minh roi
Đặt A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 . 100
3 . A = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 99 . 100 . 3
3 . A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 99 . 100 . ( 101 - 98 )
3 . A = ( 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + 99 . 100 . 101 ) - ( 0 . 1 . 2 + 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100 )
3 . A = 99 . 100 . 101 - 0 . 1 . 2
3 . A = 999900 - 0
3 . A = 999900
A = 999900 : 3
A = 333300
Vậy 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 .100 = 333300
tinh tong
D=1.2+2.3+3.4+.....+99.100
3B = 1.2.3 + 2.3.3 + 3.3.4 + .... + 3.99.100
Đặt M = 1.2.3 + 2.3.4 + 3.4.5 + .... + 99.100.101
=> M - 3A = 1.2.3 - 1.2.3 + 2.3.(4-3) + 3.4 ( 5-3) + .... + 99.100 ( 101 -3)
= 1.2.3 + 2.3.4 + .... + 98.99.100
=> M -3D = M - 99.100.101
=> D = 99.100.101/3 = 333300
Bạn nhân cả 2 vế với 3 nhé
3D=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3D=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3D=99.100.101
D=99.100.101:3=333300
3B = 1.2.3 + 2.3.3 + 3.3.4 + .... + 3.99.100
Đặt M = 1.2.3 + 2.3.4 + 3.4.5 + .... + 99.100.101
=> M - 3A = 1.2.3 - 1.2.3 + 2.3.(4-3) + 3.4 ( 5-3) + .... + 99.100 ( 101 -3)
= 1.2.3 + 2.3.4 + .... + 98.99.100
=> M -3D = M - 99.100.101
=> D = 99.100.101/3 = 333300
tinh s
S=1.2+2.3+3.4+4.5+5.6+....+99.100
S = 1.2 + 2.3 + ... + 99.100
4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)
4S = 99.100.101 - 0.1.2
4S = 99.100.101
S = 99.25.101
S = 249975
\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)
\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)
\(3S=99.100.101=9999000\)
\(S=9999000:3=3333000\)
\(\Rightarrow S=3333000\)
tinh 1 cách thuận tiện:
Tính tổng : S=1.2+2.3+3.4+.....+99.100
S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ......... + 99.100(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 99.100.101 - 98.99.100
=> 3S = (1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101) - (1.2.3 + 2.3.4 + .......... + 98.99.100)
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
Đặt S = 1 x 2 + 2 x 3 + 3 x 4 +... + 99 x 100
3 S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 98 x 99 x 3 + 99 x 100 x 3
3 S = 1 x 2 x 3 + 2 x 3 ( 4 - 1 ) + 3 x 4 ( 5 - 2 ) + ... + 98 x 99 ( 100 - 97 ) + 99 x 100 ( 101 - 98 )
3 S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... - 97 x 98 x 99 + 99 x 100 x 101 - 98 x 99 x 100
3 S = 99 x 100 x 101 3S = 3 x 33 x100 x 101
S = 33 x 100 x 101 = 333 300
tinh tong S = 1.2 + 2.3 + 3.4 + ...............+ 99. 100
1:Tim x
( x-3)(x-5)=0
(x+7).35 = 2.35
2 : Tinh tong
1.2+2.3+3.4+....................+99.100
1) (x-3)(x-5) = 0
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
(x+7).35 = 2.35
\(\Rightarrow x+7=2\)
\(\Rightarrow x=2-7=-5\)
Vậy x = -5
2) 1.2 + 2.3 + 3.4 + .... + 99.100
Đặt A = 1.2 + 2.3 + .... + 99.100
3A = 1.2.3 + 2.3.4 + 3.4.3 + .... + 99.100.3
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2)+ .... + 99.100.(101-98)
3A = ( 1.2.3 + 2.3.4 + 3.4.5 +.... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100 )
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A = 999900
A = 999900 : 3
A = 333300
Vậy A = 333300
1
\(\left(x-3\right)\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)
\(\left(x+7\right).35=2.35\)
\(x+7=2=>x=-5\)
A=1.2+2.3+3.4...+99.100
=> 3A= 1.2.3+2.3.3+3.4.3...+99.100.3
=> 3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100(101=98)
=> 3A= (1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+..+98.99.200)
=> 3A= 99.100.101-0.1.2
=> 3A= 999900-0=999900
=> A= 999900:3=333300
Tinh tong: S= 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/9.10?
S=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
S=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
S=\(\frac{1}{10}-1\)
S=\(\frac{9}{10}\)
tinh
1.2+2.3+3.4+....+99.100
ĐẶT A LÀM BIỂU THỨC
=>A=1.2+2.3+3.4+.+99.100
=>3A=1.2.3+2.3.3+3.4.3+....+99.100.3
=>3A=1.2.3+2.3(4-1)+3.4(5-2) + .......+ 99.100(101-98)
=>A=1.2.3+2.3.4-1.2.3-3.4.5-2.3.4+.....+98.99.100-99.100.101
=>A3=99.100.101
=>A=99.100.101:3
=>A=333300