Tính tổng sau :
Z = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{48.49.50}\)
Tính tổng
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}\\ =\frac{306}{1225}\)(mà đây là toán 6 mà :V)
Tính : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Mình không chép đề bài nhé :
Gọi biểu thức là A :
Ta có : 2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
=\(\frac{1}{1.2}-\frac{1}{49.50}\)( Rút gọn đi ta được cái này )
=1/2 - 1/2450
Vậy A = (1/2 - 1/2450):2
tính
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
= \(\frac{1}{1.2}-\frac{1}{49.50}\)
= \(\frac{1}{2}-\frac{1}{2450}\)
= \(\frac{612}{1225}\)
đặt
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\)
\(\Rightarrow\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1.2}-\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2450}=\frac{621}{1225}\)
\(\Rightarrow A=\frac{306}{1225}\)
=>2A = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49-50}\)
= \(\frac{1}{1.2}-\frac{1}{49.50}\)= \(\frac{1}{2}-\frac{1}{2450}=\frac{612}{1225}\)
tính A =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...\frac{1}{48.49.50}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(A=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{1.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}\right)-\frac{1}{3.4}+...\frac{1}{2}\left(\frac{1}{48.49}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(A=\left(\frac{1}{2}.\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{2}.\frac{1}{1225}=\frac{306}{1225}\)
Tính tổng
B = \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+ \(\frac{1}{3.4.5}\)+ ... + \(\frac{1}{48.49.50}\)
\(B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{49.50}\right)\)
Đến đây bạn tự tính nhé
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(B=\frac{1}{2}\cdot\frac{612}{1225}=\frac{306}{1225}\)
Vậy \(B=\frac{306}{1225}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
\(B=\frac{1}{1.2}-\frac{1}{49.50}\)
\(B=\frac{1}{2}-\frac{1}{2450}\)
\(\Rightarrow B=\frac{612}{1225}\)
tính tổng sau :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
Tính \(A=\frac{7}{1.2.3}+\frac{7}{2.3.4}+\frac{7}{3.4.5}+...+\frac{7}{48.49.50}\)
A = 7/1.2.3 + 7/2.3.4 + 7/3.4.5 + ... + 7/48.49.50
A = 7 - 7/2 - 7/3 + 7/2 - 7/3 - 7/4 + ... + 7/48 - 7/49 - 7/50.
A = 7 - 7/50
A = 343/50
Tính tổng
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2006.2007.2008}\)
tính tổng :B=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
Ta có nhận xét:
\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
Áp dụng công thức trên vào bài tập, ta có:
B=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)
Vậy \(B=\frac{185}{741}\)