Cho hàm số y=\(\dfrac{msinx+1}{cosx+2}\). Có bao nhiêu giá trị của tham số m ϵ [-2018;2018] để giá trị lớn nhất của hàm số lớn hơn 2
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = 5 - m sin x - ( m + 1 ) cos x xác định trên R?
A. 6
B. 8
C. 7
D. 5
1. Các nghiệm của phương trình \(\sqrt{3}sin2x-cos2x-2=0\) là?
2. Hàm số \(y=2cos3x+3sin3x-2\) có tất cả bao nhiêu giá trị nguyên dương?
3. Tìm tham số m để phương trình \(msinx-cosx=\sqrt{5}\) có nghiệm
Giúp mk với ạ!
1, Phương trình tương đương
\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)
⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)
⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\pi\)
2, \(2cos3x+3sin3x-2\)
= \(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2
Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)
BT = \(\sqrt{13}sin\left(x+a\right)-2\)
Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a
⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)
⇒ \(-5,6< BT< 1,6\)
Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}
3. \(msinx-cosx=\sqrt{5}\)
⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)
⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)
Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)
⇔ m2 + 1 ≥ 5
⇔ m2 - 4 ≥ 0
⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Cho hàm số y = m sin x + 1 cos x + 2 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5; 5] để giá trị nhỏ nhất của y nhỏ hơn -1.
![]()
![]()
![]()
![]()
Có bao nhiêu giá trị nguyên của m để hàm số y = 3 x + m sin x + cos x + m đồng biến trên R?
A. 3.
B. Vô số.
C. 4.
D. 5.
Cho hàm số y = m sin x + 1 cos x + 2 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5; 5] để giá trị nhỏ nhất của y nhỏ hơn -1
A. 6
B. 3
C. 4
D. 5
Cho hàm số y = m sin x + 1 cos x + 1 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5;5] để giá trị nhỏ nhất của y nhỏ hơn -1
A. 6
B. 5
C. 4
D. 3
Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y = m sin x + 1 cos x + 2 nhỏ hơn 2?
A. 5
B. 3
C. 4
D. 6
Đáp án A
Giả sử giá trị lớn nhất của hàm số là M. Khi đó
có nghiệm
xét
Có
Suy ra
có 2 nghiệm phân biệt
Ta có
suy ra
Yêu cầu bài toán

Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y = m sin x + 1 cos x + 2 nhỏ hơn 2?
A. 5
B. 3
C. 4
D. 6
Có bao nhiêu giá trị ngyên của tham số m để hàm số y = 5 − m sin x − m + 1 cos x xác định trên R ?
A. 6
B. 8
C. 7
D. 5
Đáp án B
Để hàm số xác định trên R thì 5 − m sin x − m + 1 cos x ≥ 0 ; ∀ x ∈ ℝ
⇔ m sin x + m + 1 cos x ≤ 5 ; ∀ x ∈ ℝ
⇔ m 2 + m + 1 2 ≤ 25 ⇔ m 2 + m − 12 ≤ 0 ⇔ − 4 ≤ m ≤ 3.
Vì m ∈ ℤ nên m ∈ − 4 ; − 3 ; − 2 ; − 1 ; 0 ; 1 ; 2 ; 3 ⇒ có tất cả 8 giá trị nguyên của m
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = 5 − msinx − m + 1 cosx xác định trên R?
A. 7
B. 6
C. 5
D. 8