tim x thuoc z ,biet:
-3/4=x+1/-12
tim x thuoc z , biet : 2x-3/3 + -3x +4/4+5x-12/5 = 241/60
tim x thuoc Z biet :
(x-1)^2 =(x-3)^4
HELP ME:0!!
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
(x-1)^2 =(x-3)^4=\(\left\{{}\begin{matrix}1+1\\2+2\\3+3\\4+4\end{matrix}\right.=2+4+6+8=\sqrt[]{251234=\Sigma\dfrac{2}{2}22\dfrac{2}{2}}\max\limits_{212}=\dfrac{21}{23}2123=\sum\limits1^{ }_{ }\text{(x-1)^2 =x=}\sum1\)
Bổ sung cho @ Huỳnh Thanh Phong.
(- \(x^2\) + 7\(x\) - 10).(\(x^2\) - 5\(x\) + 8) = 0
(- \(x^2\) + 5\(x\) + 2\(x\) - 10).(\(x^2\) - \(\dfrac{5}{2}\)\(x\) - \(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{7}{4}\)) = 0
[(- \(x^2\) + 5\(x\)) + (2\(x\) - 10)].[(\(x^2\) - \(\dfrac{5}{2}\)\(x\)) - (\(\dfrac{5}{2}\)\(x\) - \(\dfrac{25}{4}\)) + \(\dfrac{7}{4}\)] = 0
[ -\(x\)(\(x\) - 5) + 2.(\(x\) - 5)]. [\(x\)(\(x\) - \(\dfrac{5}{2}\)) - \(\dfrac{5}{2}\).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x-\dfrac{5}{2}\)).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\)] = 0 (1)
Vì (\(x\) - \(\dfrac{5}{2}\))2 ≥ 0 ⇒ (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\) ≥ \(\dfrac{7}{4}\) (2)
Kết hợp (1) và (2) ta có:
\(\left[{}\begin{matrix}x-5=0\\-x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {2; 5}
tim x,y thuoc z biet x/5=y/3=z/4 và x-z=7
tim x,y thuộc z biết x/3=y/4=z/5 và 2z+3y+5z=86
a) Áp dụng t/ của dãy tỉ số = nhau, ta có:
x/5=y/3=z/4=x-z/5-4=7/1=7
Khi đó x/5=7=>x=35
y/3=7=>y=21
z/4=7=>z=28
Vậy _________
b) Mình sửa lại đề cho bạn nhé, bạn bị sai 1 chỗ: tim x,y thuộc z biết x/3=y/4=z/5 và 2x+3y+5z=86
Ta có: x/3=y/4=z/5 <=>2x/6=3y/12=5z/25
Áp dụng t/c của dãy tỉ số = nhau, ta có:
x/3=y/4=z/5=2x/6=3y/12=5z/25= (2x+3y+5z)/6+12+25= 86/43=2
Khi đó: x/3=2=>x=6
y/4=2=>y=8
z/5=2=>z= 10
Vậy _________
tim x thuoc Z biet
a) 17-(2x-11) = 12-3x
b) /2x-3/ = 7
c) (2x-1)^4 = 16
d) (17-2x )^3=-125
a) 17-(2x-11) = 12-3x
2x-11 = 17-12+3x
2x-11 = 5+3x
2x-3x = 5+11
-x = 16
x = -16
b, |2x-3|=7
=>2x-3=7 hoặc 2x-3=-7
=>2x=10 hoặc 2x=-4
=>x=5 hoặc x=-2
c, (2x-1)4 = 16
(2x-1)4 = 24
2x-1=2
2x=3
x=3/2
d, (17-2x)3 = -125
(17-2x)3 = (-5)3
17-2x=-5
2x=17-(-5)
2x=22
x=11
a, => 17-2x+11 = 12-3x
=> 28-2x=12-3x
=> 28=12-3x+2x = 12-x
=> x=12-28 = -16
b, => 2x-3=7 hoặc 2x-3=-7
=> x=5 hoặc x=-2
c, => 2x-1=2 hoặc 2x-1=-2
=> x=3/2 hoặc x=-1.2
d, => 17-2x=-5
=> 2x=17-(-5) = 22
=> x=22:2 = 11
Tk mk nha
tim x,y thuoc z biet (x-2).(y+12)<0
tim x,y thuoc z biet (x-2).(y+12)<0
Ta có: (x-2)(y+12)<0
nên x-2;y+12 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x-2>0\\y+12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\y< -12\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2< 0\\y+12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\y>-12\end{matrix}\right.\)
tim x,y thuoc z biet
-24/-6 = x/3 = 4/y^2 = z^3/-2
tim x thuoc Z,biet : (x-1).(xy+3)
tim x thuoc Z,biet : (x-1).(xy+3)
(x-1).(xy+3)=?????
phải có kết quả mới làm đc