Tính giá trị biểu thức:
D(x)= x^4+x^3-5x^2-7x+2022. Khi x= căn bậc 2 +1
Bài 1: Rút gọn rồi tính giá trị của mỗi biểu thức sau:
a) M = 1/2 x²y . (-4)y
khi x + √2 ; y = √3
b) N = xy √5x²
khi x = -2; y = √5
Bài 2 : Tính giá trị tổng 4 đơn thức khi x = -6; y= 15
: 11x²y³ ; 10/7x²y³; -3/7x²y³; -12x²y³
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0
Tính giá trị biểu thức:
A=2x^3-3x^2 + 2 /x/ +4 taị x =-2/3
B=2/x/ -3/y/với x=1/2 và y=-3
C=2/x-2/ -3/1-x/ khi x =4
D=5x^2 -7x +1phần 3x-1 khi /x/=2
/x/ là giá trị tuyệt đối
giá trị nhỏ nhất của biểu thức :căn bậc hai của ( x^2 + 9 ) - 2025
phần (...) là trong căn bậc nha mn
a -2025 b2025 c-2022 d0
Do \(x^2\ge0;\forall x\)
\(\Rightarrow\sqrt{x^2+9}-2025\ge\sqrt{0+9}-2025=-2022\)
C là đáp án đúng
giá trị nhỏ nhất của biểu thức :căn bậc hai của ( x^2 + 9 ) - 2025
phần (...) là trong căn bậc nha mn
a -2025 b2025 c-2022 d0
BT6: Tính giá trị của biểu thức
\(1,A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=-5\)
\(2,B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=10,y=-1\)
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....
với giá trị nào của x thì biểu thức có nghĩa:
f) căn bậc tất cả 2x-1/2-x
g) căn bậc x-3/ căn bậc 5-x h
h) căn bậc x-1.căn bậc x+5
f: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)
=>\(\dfrac{2x-1}{x-2}< =0\)
=>\(\dfrac{1}{2}< =x< 2\)
g: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>0\end{matrix}\right.\Leftrightarrow3< =x< 5\)
h: ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\x+5>=0\end{matrix}\right.\Leftrightarrow x>=1\)
Bài 2 :Thực hiện phép tính
a/ (2x – 1)(x2 + 5 – 4) b/ -(5x – 4)(2x + 3)
c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).
Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).
b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ 5x( x – 2000) – x + 2000 = 0 c/ 2x( x + 3 ) – x – 3 = 0
Bài 5: Tính giá trị các biểu thức sau:
a. P = 5x(x2 – 3) + x2(7 – 5x) – 7x2 với x = - 5
b. Q = x(x – y) + y(x – y) với x = 1,5, y = 10
Bài 6: Rút gọn biểu thức:
a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
II/ PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài 1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)
b1 : rút gọn biểu thức
a: x-y/y^2 nhân căn y^4/x^2 - 2xy + y^2 với x khác y
b: căn x- 2 căn x +1/x+ 2 căn x +1 với x > 0
b2: rút gọn rồi tính giá trị
a: B= căn (x+2) ^4 / (3-x)^2 + x^2+1/x+3 với x<3 và tính b khi x= 0.5
b: C = 5x - căn 8 + căn x^3 + 2x^2/ căn x+2 cới x > -2 và tính C khi x + - căn 2
c: D= căn 3(x+y)^2/4 nhân 2/x^2-y^2 với x khác y
Cho biểu thức: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
a, Tìm điều kiện của \(x\) để biểu thức P có giá trị
b, Rút gọn biểu thhuwcs P
c, Tính giá trị của P khi \(x\) thỏa mãn: \(x^3-x^2+2=0\)
a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)
b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)
\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
c: \(x^3-x^2+2=0\)
=>\(x^3+x^2-2x^2+2=0\)
=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
=>x+1=0
=>x=-1
Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)
Tính giá trị biểu thức sau:
a) A= (5x-7)(2x+3)-(7x+2)(x-4) tại x=\(\dfrac{1}{2}\)
b) B= (x-2y)(y-2x)+(x+2y)(y+2x) tại x = 2; y = - 2 .
a) Thay `x=1/2` vào A được:
`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`
b) Thay `x=2;y=-2` vào B được:
`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.
a) Với \(x=\dfrac{1}{2}\) ta được:
\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)
\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)
\(\Rightarrow A=\dfrac{5}{4}\)
b) Với \(x = 2; y = - 2 \) ta được :
\(\Leftrightarrow B=\left(2-2\left(-2\right)\right)\left(\left(-2\right)-2.2\right)+\left(2+2\left(-2\right)\right)\left(\left(-2\right)+2.2\right)\)
\(\Leftrightarrow B=-40\)