Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 11:37

Ta có:

 

Dấu “=” xảy ra khi và chỉ khi

Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.

Chọn B.

Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
OH-YEAH^^
13 tháng 11 2021 lúc 13:53

Ta có: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}\left(1\right)\)

\(\dfrac{c}{a+b}=\dfrac{b}{a+c}\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}\left(2\right)\)

Từ (1), (2) \(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+b}{c}=\dfrac{a+c}{b}\)

Liễu Lê thị
Xem chi tiết
Ngo Mai Phong
13 tháng 11 2021 lúc 18:07

a+b−cc=b+c−aa=c+a−bb

 

⇒a+b−cc+1=b+c−aa+1=c+a−bb+1

 

⇒a+bc=b+ca=c+ab

 

+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b

 

⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1

 

Nếu a+b+c≠0

 

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2

 

⇒a+b=2c

 

      b+c=2a

 

       c+a=2b

 

⇒B=2ca.2bc.2ab=2.2.2=8

son tran truong
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2019 lúc 15:18

Đáp án B

Nguyễn Tấn Phát
Xem chi tiết
Thanh Tùng DZ
20 tháng 11 2017 lúc 20:09

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

cộng 1 vào mỗi tỉ số,ta được :

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; b + c = -a ; a + c = -b

\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

xét a + b + c khác 0 \(\Rightarrow\)b + c = a + c = a + b \(\Rightarrow\)a = b = c

\(\Rightarrow P=2+2+2=6\)

Nguyễn Anh Quân
20 tháng 11 2017 lúc 20:08

Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2

=> P = 2+ 2 + 2  =6

k mk nha

Nguyễn Tiến Hồng
21 tháng 11 2017 lúc 20:26

câu này = 6

Trần Tuấn Anh
Xem chi tiết
Edogawa Conan
27 tháng 7 2019 lúc 16:04

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a,b,c \(\ne\)0)

=> \(\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{c+a-b}{b}=1\end{cases}}\) => \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\)=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Khi đó, ta có: B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

B = \(\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)\)

B = \(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)

Vậy ...

(xem lại đề)

Trần Tuấn Anh
27 tháng 7 2019 lúc 16:10

Cho a,b,c là 3 số thực khác 0, thỏa mãn điều kiện:

a+b-c / c = b+c-a /a = c+a-b / b

Hãy tính B = ( 1+b/a).(1+a/c).(1+c/b)