Tìm X. Biết
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Tìm x biết:\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Tìm x, biết: \(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Tìm x biết:
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
TÌm x biết:
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Ta có :\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}+\frac{12}{x^2+8}+\frac{7}{x^2+3}=3\)
\(\Leftrightarrow\left(\frac{6}{x^2+2}-1\right)+\left(\frac{12}{x^2+8}-1\right)+\left(\frac{7}{x^2+3}-1\right)=0\)
\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+3}=0\)
\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\right)=0\)
Ta thấy : \(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\ne0\forall x\)
Do đó : \(4-x^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\) ( thỏa mãn )
Vậy : \(x\in\left\{-2,2\right\}\)
Tìm x, biết:
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Tìm x
ta thấy 6-2=4, 12-8=4, 7-3=4 nên
6/(x^2+2)-1+12/(x^2+8)-1+7/(x^2+3-)=0
<=>(4-x^2)(1/(x^2+2)+1/(x^2+8)+1/(x^2+3))=0
=> x= 2 hoặc x=-2
Bạn làm rõ được không ạ , thiếu 3 mà bạn
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}+\frac{7}{x^2+3}=3\)
\(\Leftrightarrow\left(\frac{6}{x^2+2}-1\right)+\left(\frac{12}{x^2+8}-1\right)+\left(\frac{7}{x^2+3}-1\right)=0\)
đến đay làm như trên
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
tìm x biết: \(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Đặt \(x^2+3=t\) ta có:
\(\frac{6}{t-1}+\frac{12}{t+5}=3-\frac{7}{t}\)
\(\Leftrightarrow\frac{6\left(t+5\right)}{\left(t-1\right)\left(t+5\right)}+\frac{12\left(t-1\right)}{\left(t-1\right)\left(t+5\right)}=\frac{3t-7}{t}\)
\(\Leftrightarrow\frac{18t+18}{t^2+4t-5}=\frac{3t-7}{t}\)
\(\Leftrightarrow3t^3+5t^2-43t+35=18t^2+18t\)
\(\Leftrightarrow3t^3-13t^2-61t+35=0\)
\(\Leftrightarrow\left(t-7\right)\left(3t^2+8t-5\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}t=7\\t=\frac{-8\pm\sqrt{124}}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2+3=7\\x^2+3=\frac{-8\pm\sqrt{124}}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x^2=4\\x^2+3=\frac{-8\pm\sqrt{124}}{6}\left(loai\right)\end{matrix}\right.\)\(\Leftrightarrow x=\pm2\)
Bài 8: Tìm số nguyên x biết
a) \(\left(\frac{-12}{27}+\frac{2}{3}\right)+\frac{-2}{9}\le x\le\left(\frac{11}{7}+\frac{2}{5}\right)+\frac{7}{5}+\frac{3}{7}\) b\(\frac{-x}{2}+\frac{2x}{3}+\frac{x+1}{4}+\frac{2x+1}{6}=\frac{8}{3}\)
c)\(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)