Cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=BA
CMR: AB=AC<BC+AH; DH<DC
Cho tam giác vuông ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = AB, trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh rằng: CD.CH = CE.CA .
Tự luận: Cho tam giác ABC vuông tại A. Kẻ AH ⊥ BC . Trên cạnh huyền BC lấy điểm D sao cho BD = AB. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh rằng DE ⊥ AC ⇒ BC + AH > AC + AB .
Cho tam giác ABC có AB = 3cm; AC = 4cm; BC = 5cm. Kẻ đường cao AH( H thuộc BC).
1) Chứng tỏ tam giác ABC là tam giác vuông.
2) Trên cạnh BC lấy điểm D sao cho BD = BA, trên cạnh AC lấy điểm E sao cho AE = AH. Gọi F là giao điểm của DE và AH. Chứng minh:
a) DE vuông góc với AC.
b) Tam giác ACF là tam giác cân.
c) BC + AH > AC+ AB
Cho tam giác ABC vuông tại A. kẻ AH vuông góc với BC. trên cạnh huyền BC lấy điểm D sao cho BD=AD, trên cạnh AC lấy điểm E sao cho AE=AH. Chứng minh DE vuông góc với AC thì BC+AH>AC+AB
Cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC ở E. So sánh HD và DC.
Cho tam giác ABC vuông tại A ( AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC
a, CM: BC= DE
b, CM: tam giác ABD vuông cân và BD // CE
c, Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M, từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N. Cm: NM//AB
d, Cm: AE2 + AD2 = 4AM2
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. a) Chứng minh: BC = DE. b) Chứng minh: tam giác ABD vuông cân và BD // CE. c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh: NM // AB. d) Chứng minh: AM = DE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
Cho tam giác vuông ABC, vuông tại A (AB<AC). Trên tia đối của tia AC lấy ddiemr D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh: BC = DE
b) Chứng minh: tam giác ABD vuông cân và BD//CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M, từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N. Chứng minh: NM // AB.
d) Chứng minh: AM = DE/2.
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Xet ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
=>BC=DE