Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Đức
Xem chi tiết
MoMo Trần
Xem chi tiết
Nguyen Thi Phuong Anh
2 tháng 9 2017 lúc 22:35

Đặt x +\(\frac{1}{x}\) =a, y+\(\frac{1}{y}\)=b

hpt<=>\(\hept{\begin{cases}a^2-2+b^2-2=1\\a+b=3\end{cases}}\) 
đến đây thì dễ rồi , có tổng với tích 
bạn tìm ra a,b rồi tương tự tìm x,y 
Phạm Tuấn Kiệt
Xem chi tiết
beethoven
14 tháng 11 2017 lúc 11:18
Chịu
Vũ Gia An
11 tháng 1 2022 lúc 16:21

google xin tài trợ chương trình

Khách vãng lai đã xóa
Nguyễn Duy	Khoa
11 tháng 1 2022 lúc 20:03

có google thôi anh

Khách vãng lai đã xóa
lethienduc
Xem chi tiết
Thắng Nguyễn
7 tháng 1 2020 lúc 18:51

Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)

Khách vãng lai đã xóa
Hoàng Lê Bảo Ngọc
Xem chi tiết
phan tuấn anh
28 tháng 11 2016 lúc 21:19

mk nghĩ giải theo cách này 

đặt \(x^2+y^2=a\) và \(\frac{x}{y}=b\) thì hpt trở thành 

\(\hept{\begin{cases}\frac{3}{a-1}+\frac{2}{b}=1\\a-2b=4\end{cases}}\)<=> \(\hept{\begin{cases}a=2b+4\\\frac{3}{2b-3}+\frac{2}{b}=1\end{cases}}\)<=> \(\hept{\begin{cases}2b^2-4b-6=0\\a=2b+4\end{cases}}< =>\hept{\begin{cases}\orbr{\begin{cases}b=3\\b=-1\end{cases}}\\a=2b+4\end{cases}}\)

đến đây cậu tự giải nốt nhé 

Nguyễn Minh Sang
Xem chi tiết
Trần Hữu Ngọc Minh
31 tháng 12 2018 lúc 22:13

trừ cho nhau là xong

Phương Thảo
1 tháng 2 2019 lúc 16:36

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

Darlingg🥝
17 tháng 6 2019 lúc 17:46

Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình 

Trương Trọng Tiến
Xem chi tiết
Crkm conan
Xem chi tiết
Nguyễn Tất Đạt
12 tháng 2 2019 lúc 21:27

Hpt cho tương đương:

\(\hept{\begin{cases}xy-x-y+1=6\\\frac{1}{\left(x^2-2x+1\right)-1}+\frac{1}{\left(y^2-2y+1\right)-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=6\\\frac{1}{\left(x-1\right)^2-1}+\frac{1}{\left(y-1\right)^2-1}=\frac{2}{3}\end{cases}}}\)

Đặt \(x-1=a,y-1=b\)(dễ thấy a,b khác 0). Khi đó hệ trở thành:

\(\hept{\begin{cases}ab=6\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{6}{a}\\\frac{1}{a^2-1}+\frac{1}{\frac{36}{a^2}-1}=\frac{2}{3}\left(1\right)\end{cases}}}\)

Giải (1) \(\Leftrightarrow\frac{1}{a^2-1}+\frac{a^2}{36-a^2}=\frac{2}{3}\Leftrightarrow\frac{3\left(36-a^2\right)+3a^2\left(a^2-1\right)}{3\left(a^2-1\right)\left(36-a^2\right)}=\frac{2\left(a^2-1\right)\left(36-a^2\right)}{3\left(a^2-1\right)\left(36-a^2\right)}\)

\(\Rightarrow108-3a^2+3a^4-3a^2=74a^2-2a^4-72\)

\(\Leftrightarrow a^4-16a^2+36=0\Leftrightarrow\left(a^2-8\right)^2=28\Leftrightarrow\orbr{\begin{cases}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=\sqrt{8+2\sqrt{7}}\\a=\sqrt{8-2\sqrt{7}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=1+\sqrt{7}\\a=1-\sqrt{7}\end{cases}}\)

Suy ra: \(\hept{\begin{cases}a=1+\sqrt{7}\\b=\frac{6}{a}\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=\frac{6}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1+\sqrt{7}\\b=\sqrt{7}-1\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=-1-\sqrt{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2+\sqrt{7}\\y=\sqrt{7}\end{cases}}\) hoặc \(\hept{\begin{cases}x=2-\sqrt{7}\\y=-\sqrt{7}\end{cases}}\). Kết luận:...

Trung Phan Bảo
Xem chi tiết
Phạm Hồ Thanh Quang
20 tháng 2 2019 lúc 17:08

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn