Chứng tỏ rằng \(\frac{a}{a+1}\) hoặc \(\frac{a-1}{a}\) tối giản
Cho phân số \(\frac{a}{b}\) là phân số tối giản . Chứng tỏ rằng phân số \(\frac{a}{a+b}\) cũng là phân số tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\) là tối giản thì phân số \(\frac{a+b}{b}\) cũng tối giản. Suy ra \(\frac{246913579}{123456790}\) là tối giản.
làm sao làm sao, gấp lắm, sắp nộp rùi
Google để chơi à
Lên Google Search tìm xong
Không có mới đăng lên
a, Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
b,Chứng mình rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}<1\)
a, Đặt ƯCLN(12n+1 ; 30n + 2) = d
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5.(12n + 1) - 2.(30n + 2) = 60n + 5 - 60n + 4 = 1 chia hết cho d
=> d thuộc Ư(1) <=> d = 1
Do đó suy ra điều phải chứng tỏ
a) Tìm số tự nhiên n để \(A=\frac{n}{2n+3}\) là phân số tối giản
b) Chứng tỏ rằng phân số \(\frac{3a}{3a+1}\) (với a thuộc N ) là phân số tối giản
ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1
Tim số tự nhiên n để phân số (2n+3)/(4n+1) tối giản
Chứng tỏ rằng phân số A tối giản với mọi số tự nhiên n : \(A=\frac{n+1}{2n+3}\)
Đặt (n + 1 ; 2n + 3) = d (d \(\in\) N*)
=> 2n + 3 - 2(n + 1) chia hết cho d
=> 2n + 3 - 2n + 2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Do đó A = \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi ƯC(n+1,2n+3)=d
Ta có: n+1 chia hết cho d=>2.(n+1) chia hết cho d=>2n+2 chia hết cho d
2n+3 chia hết cho d
=>2n+3-(2n+2) chia hết cho d
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>ƯC(n+1,2n+3)=1
Vậy phân số A tối giản
Gọi ƯC(n+1,2n+3)=d
Ta có: n+1 chia hết cho d=>2.(n+1) chia hết cho d=>2n+2 chia hết cho d
2n+3 chia hết cho d
=>2n+3-(2n+2) chia hết cho d
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>ƯC(n+1,2n+3)=1
Vậy phân số A tối giản
a) Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
b) Chứng minh rằng\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\)
giúp mik với nha
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
=\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
Có \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{1}-\frac{1}{100}\)
=\(\frac{99}{100}\)
Vì \(\frac{99}{100}< 1\)
mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<1
Vậy.....
Cho\(\frac{a}{b}\)là phân số tối giản (a,b thuộc \(N^{sao}\)).Chứng tỏ rằng \(\frac{a}{a+b}\)cũng là phân số tối giản.
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\)là phân số tối giản thì phân số \(\frac{a+b}{b}\)cũng là phân số tối giản.
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
cho \(\frac{a}{b}\)là phân số chưa tối giản , chứng tỏ rằng phân số \(\frac{a+b}{b}\)cũng chưa tối giản ( voi a,b,c thuoc Z , b khac 0 )
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.