Tính giá trị biểu thức :
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}\)
Tính giá trị biểu thức : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+..............+\frac{1}{1024}+\frac{1}{2048}=\)
Giúp mình với !!!!!!!!!!!!!!!!
A=1/2+1/4+1/8+1/16+...+1/2048
2A=1+1/2+1/4+1/1/8+...+1/1024
2A-A=(1+1/2+...+1/1024)-(1/2+1/4+...+1/2048)
A=1-1/2048
A=2047/2048
1.THực hiện phép tính: \(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)
2.Tính giá trị của biểu thức: B=\(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{4}\right)^5.3}{\frac{1}{1024}.\frac{1}{3}-\left(\frac{1}{2}\right)^{11}}\)
1) tự làm (thực hiện từ dưới lên)
2) B = \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{4}\right)^5.3}{\frac{\frac{1}{1024}.1}{3}-\left(\frac{1}{2}\right)^{11}}\)
= \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{2}\right)^{10}.3}{\left(\frac{1}{2}\right)^{10}.\frac{1}{3}-\left(\frac{1}{2}\right)^{10}.\frac{1}{2}}\)
= \(\frac{\left(\frac{1}{2}\right)^{10}.\left(5-3\right)}{\left(\frac{1}{2}\right)^{10}.\left(\frac{1}{3}-\frac{1}{2}\right)}\)
= \(\frac{2}{-\frac{1}{6}}\)= 2 . (-6) = -12
1) \(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}=5+\frac{15}{7}=\frac{5}{1}+\frac{15}{7}=\frac{50}{7}\)
\(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}=\frac{50}{7}\).
Tính giá trị của biểu thức A:
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
A= -(1+1/2+1/4+1/8+...+1/1024)
A=-(1+1/2+1/2^2+1.2^3+...1/2^10)
2A= -(2+1+1/2+1/^2+...1/2^9)
A=2A-A = -(2+1+1/2+1/^2+...1/2^9)-(1+1/2+1/2^2+1.2^3+...1/2^10) = -(2+1/2^10) = -2-1/2^10= -(2049/1024)
\(A=-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow-2A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2056}\)
\(\Rightarrow-2A-A=\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2056}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(\Rightarrow-3A=\frac{1}{2056}-1\)
\(\Rightarrow-3A=\frac{-2055}{2056}\)
\(\Rightarrow A=\frac{685}{2056}\)
Vậy...
\(\Rightarrow A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
Đặt B=\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{512}\)
\(\Rightarrow2B-B=\)\(\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(\Rightarrow B=2-\frac{1}{1024}\)=\(\frac{2047}{1024}\)
=>A=-2047/1024
tính biểu thức sau
\(a=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..........+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)
\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
\(A=2^{11}-2\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
Giúp tớ với :
1. Tìm giá trị x nguyên thỏa mãn :
\(2-\frac{3}{13}< x< 1-2.4\)
2. Tính giá trị biểu thức :
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
3. Giá trị \(x< 0\)thỏa mãn: \(x^4=6.25^2\)
Cảm ơn mấy bạn nhiều lắm ! Giải chi tiết ra giúp tớ nha :))
Tính giá trị của các biểu thức sau:
\(\begin{array}{l}a)A = (2 - \frac{1}{2} - \frac{1}{8}):(1 - \frac{3}{2} - \frac{3}{4});\\b)B = 5 - \frac{{1 + \frac{1}{3}}}{{1 - \frac{1}{3}}}.\end{array}\)
\(\begin{array}{l}a)A = (2 - \frac{1}{2} - \frac{1}{8}):(1 - \frac{3}{2} - \frac{3}{4})\\ = (\frac{{16}}{8} - \frac{4}{8} - \frac{1}{8}):(\frac{4}{4} - \frac{6}{4} - \frac{3}{4})\\ = \frac{{11}}{8}:\frac{{ - 5}}{4}\\ = \frac{{11}}{8}.\frac{4}{{ - 5}}\\ = \frac{{ - 11}}{{10}}\\b)B = 5 - \frac{{1 + \frac{1}{3}}}{{1 - \frac{1}{3}}}\\ = 5 - \frac{{\frac{3}{3} + \frac{1}{3}}}{{\frac{3}{3} - \frac{1}{3}}}\\ = 5 - \frac{{\frac{4}{3}}}{{\frac{2}{3}}}\\ = 5 - \frac{4}{3}:\frac{2}{3}\\ = 5 - \frac{4}{3}.\frac{3}{2}\\ = 5 - 2\\ = 3\end{array}\)
Chú ý:
Khi thực hiện phép cộng hai phân số, nếu phân số thu được chưa tối giản thì ta rút gọn thành phân số tối giản.
Tính giá trị của các biểu thức sau:
\(\begin{array}{l}a)(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\b)(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\end{array}\)
a) Cách 1:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = 8 + \frac{7}{3} - \frac{3}{5} - 5 - \frac{2}{5} - \frac{{10}}{3} + 2\\ = (8 - 5 + 2) + (\frac{7}{3} - \frac{{10}}{3}) - (\frac{3}{5} + \frac{2}{5})\\ = 5 + \frac{{ - 3}}{3} - \frac{5}{5}\\ = 5 + ( - 1) - 1\\ = 3\end{array}\)
Cách 2:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = (\frac{{120}}{{15}} + \frac{{35}}{{15}} - \frac{9}{{15}}) - (\frac{{25}}{5} + \frac{2}{5}) - (\frac{{10}}{3} - \frac{6}{3})\\ = \frac{{146}}{{15}} - \frac{{27}}{5} - \frac{4}{3}\\ = \frac{{146}}{{15}} - \frac{{81}}{{15}} - \frac{{20}}{{15}}\\ = \frac{{45}}{{15}}\\ = 3\end{array}\)
b)
\(\begin{array}{l}(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\\ = (\frac{{28}}{4} - \frac{2}{4} - \frac{3}{4}):(\frac{{40}}{8} - \frac{2}{8} - \frac{5}{8})\\ = \frac{{23}}{4}:\frac{{33}}{8}\\ = \frac{{23}}{4}.\frac{8}{{33}}\\ = \frac{{46}}{{33}}\end{array}\)
Tính giá trị của các biểu thức sau:
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\end{array}\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
Tính giá trị của các biểu thức sau
1)\(\left(3\frac{5}{12}-1\frac{8}{9}\right):\left(0,25-2\frac{1}{12}\right)\)
2)\(\left(1\frac{4}{7}-2\frac{2}{5}\right):\left(1\frac{1}{8}-4\frac{3}{4}\right)\)