-1( 1+1/2+1/4+1/8+...+1/1024)
= -1.( 1+ 1-1/2+1/2-1/4+1/4-1/8+...+1/512-1/1024)
= -1.( 1+ 1-1/1024)
=-( 2- 1/1024)
= - 2047/ 1024
p/s : mk chỉ nghĩ ra cách lm thui, chớ về phần tính toán mk sợ sai, nếu sai mong bạn thông cảm nha! ( mk nghĩ kq sai !)
-1( 1+1/2+1/4+1/8+...+1/1024)
= -1.( 1+ 1-1/2+1/2-1/4+1/4-1/8+...+1/512-1/1024)
= -1.( 1+ 1-1/1024)
=-( 2- 1/1024)
= - 2047/ 1024
p/s : mk chỉ nghĩ ra cách lm thui, chớ về phần tính toán mk sợ sai, nếu sai mong bạn thông cảm nha! ( mk nghĩ kq sai !)
1.THực hiện phép tính: \(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)
2.Tính giá trị của biểu thức: B=\(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{4}\right)^5.3}{\frac{1}{1024}.\frac{1}{3}-\left(\frac{1}{2}\right)^{11}}\)
Giúp tớ với :
1. Tìm giá trị x nguyên thỏa mãn :
\(2-\frac{3}{13}< x< 1-2.4\)
2. Tính giá trị biểu thức :
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
3. Giá trị \(x< 0\)thỏa mãn: \(x^4=6.25^2\)
Cảm ơn mấy bạn nhiều lắm ! Giải chi tiết ra giúp tớ nha :))
tính giá trị biểu thức\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2019}{1}+\frac{2019}{2}+\frac{2017}{3}+...+\frac{1}{2019}}\)
Tìm giá trị của biểu thức:(Tính nhanh)
B=\(\frac{-1:1\frac{1}{5}}{3\frac{1}{8}:6\frac{2}{3}}\):\(\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\):\(\frac{1}{3^2}\)
Giải hộ mình với nha!!!!
Tính giá trị của biểu thức \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Tính giá trị của biểu thức \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Cho biểu thức: A=\(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
Tính giá trị biểu thức B=\(4|A|+\frac{1}{3^{100}}\)
Cho biểu thức: \(A=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
Tính giá trị biểu thức \(B=4|A|+\frac{1}{3^{100}}\)
Tính giá trị biểu thức: Q=\(\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)