A= -(1+1/2+1/4+1/8+...+1/1024)
A=-(1+1/2+1/2^2+1.2^3+...1/2^10)
2A= -(2+1+1/2+1/^2+...1/2^9)
A=2A-A = -(2+1+1/2+1/^2+...1/2^9)-(1+1/2+1/2^2+1.2^3+...1/2^10) = -(2+1/2^10) = -2-1/2^10= -(2049/1024)
\(A=-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow-2A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2056}\)
\(\Rightarrow-2A-A=\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2056}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(\Rightarrow-3A=\frac{1}{2056}-1\)
\(\Rightarrow-3A=\frac{-2055}{2056}\)
\(\Rightarrow A=\frac{685}{2056}\)
Vậy...
\(\Rightarrow A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
Đặt B=\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{512}\)
\(\Rightarrow2B-B=\)\(\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(\Rightarrow B=2-\frac{1}{1024}\)=\(\frac{2047}{1024}\)
=>A=-2047/1024
Sửa lại:
\(A=-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow-2A=2+1+\frac{1}{2}+...+\frac{1}{512}\)
\(\Rightarrow-2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(\Rightarrow-3A=2-\frac{1}{1024}\)
\(\Rightarrow-3A=\frac{2047}{1024}\)
\(\Rightarrow A=\frac{-2048}{3}\)
Vậy...
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=-\left(\frac{1}{2^0}+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2^0}+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\frac{1}{2}B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
\(B-\frac{1}{2}B=\frac{1}{2^0}-\frac{1}{2^{11}}\)
\(\frac{1}{2}B=\frac{1}{2^0}-\frac{1}{2^{11}}\)
\(B=2\left(\frac{1}{2^0}-\frac{1}{2^{11}}\right)\)
Thế B vào A ta có
\(A=-2\left(\frac{1}{2^0}-\frac{1}{2^{11}}\right)\)