Ta có :
\(A=-1-\frac{1}{2}-\frac{1}{4}-....-\frac{1}{1024}\)
\(\Rightarrow\left(-2+1\right)A=\left(-2+1\right)\left(-1-\frac{1}{2}-\frac{1}{4}-....-\frac{1}{1024}\right)\)
\(\Rightarrow-A=\left(-2\right)\left(-1-\frac{1}{2}-\frac{1}{4}-....-\frac{1}{1024}\right)+\left(-1-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{1024}\right)\)
\(\Rightarrow-A=\left(2+1+\frac{1}{2}+....+\frac{1}{512}\right)+\left(-1-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{1024}\right)\)
\(\Rightarrow-A=2-\frac{1}{1024}\)
\(\Rightarrow A=-2+\frac{1}{1024}\)
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
Đặt A = -B
\(B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(B=2-\frac{1}{1024}=\frac{2047}{1024}\)
=> \(A=-\frac{2047}{1024}\)