Gọi \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2014}\right)\)
\(\Rightarrow A=1-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1023}{1024}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}=\frac{1023}{1024}\)